• Title/Summary/Keyword: J-ring

Search Result 564, Processing Time 0.026 seconds

CONJUGATE ACTION IN A LEFT ARTINIAN RING

  • Han, Jun cheol
    • Bulletin of the Korean Mathematical Society
    • /
    • v.32 no.1
    • /
    • pp.35-43
    • /
    • 1995
  • IF R is a left Artinian ring with identity, G is the group of units of R and X is the set of nonzero, nonunits of R, then G acts naturally on X by conjugation. It is shown that if the conjugate action on X by G is trivial, that is, gx = xg for all $g \in G$ and all $x \in X$, then R is a commutative ring. It is also shown that if the conjegate action on X by G is transitive, then R is a local ring and $J^2 = (0)$ where J is the Jacobson radical of R. In addition, if G is a simple group, then R is isomorphic to $Z_2 [x]/(x^2 + 1) or Z_4$.

  • PDF

Observation of magnetic fields due to persistent currents in a ring made of a coated conductor

  • Goo, Doo-Hoon;Kim, Ho-Sup;Youm, D.;Jung, Kook-Chae
    • 한국초전도학회:학술대회논문집
    • /
    • v.10
    • /
    • pp.92-98
    • /
    • 2000
  • A ring comprising a coated conductor was fabricated. A ring was made first using a biaxially textured Ni tape whose two ends were connected by means of the atomic diffusion bonding technique. Then buffer layers and a YBCO film were deposited on it. All the films were well textured as confirmed by XRD pole figures. The B-H loops, where B and H are the magnetic field at the center of the ring and the applied field respectively, were measured as a function of temperature. The persistent current density (J$_c$) flowing circularly was estimated from the remanent field of B. In the range of temperature from 72K to 20K, J$_c$ changed from zero to 2${\times}$1 0$^5$A/cm$^2$.

  • PDF

Variation of Inter-Ring Gas Pressure in Internal Combustion Engine (내연기관 피스톤 링들 사이 가스압력 변동)

  • Yun, J.E.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.6
    • /
    • pp.238-249
    • /
    • 1995
  • The gas pressure acting on the rings in internal combustion engine influences the friction and wear characteristics. Inter-ring pressure variation during engine operation results from cylinder gas flow through a piston-ring pack. The flow passages consist of ring end gaps and clearances between the ring and the piston groove. The gas flow in the clearance between the ring and the groove is directly affected by the axial motion of the ring in the groove. In this paper the asperity contact force is newly considered in the prediction of the clearence between the ring and the groove surface. This term must be taken into account physically in case that the clearance get narrow rather than asperity height between the ring and the groove surface. Finally, comparisons of calculated inter-ring gas pressures based on the analytical method are made with the measured ones. The agereement was found to be good below midium engine speed, 3000rpm. In order to obtain accurate analytical results to the extend of high rpm range, it is recommended to include oil ring motion as well as top and second ring in analytical model.

  • PDF

A REMARK ON MULTIPLICATION MODULES

  • Choi, Chang-Woo;Kim, Eun-Sup
    • Bulletin of the Korean Mathematical Society
    • /
    • v.31 no.2
    • /
    • pp.163-165
    • /
    • 1994
  • Modules which satisfy the converse of Schur's lemma have been studied by many authors. In [6], R. Ware proved that a projective module P over a semiprime ring R is irreducible if and only if En $d_{R}$(P) is a division ring. Also, Y. Hirano and J.K. Park proved that a torsionless module M over a semiprime ring R is irreducible if and only if En $d_{R}$(M) is a division ring. In case R is a commutative ring, we obtain the following: An R-module M is irreducible if and only if En $d_{R}$(M) is a division ring and M is a multiplication R-module. Throughout this paper, R is commutative ring with identity and all modules are unital left R-modules. Let R be a commutative ring with identity and let M be an R-module. Then M is called a multiplication module if for each submodule N of M, there exists and ideal I of R such that N=IM. Cyclic R-modules are multiplication modules. In particular, irreducible R-modules are multiplication modules.dules.

  • PDF

Design and Analysis of Electromagnetic System (자기 시스템의 해석과 설계)

  • Park, S.W.;Oh, J.H.;Yoon, S.S.
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.520-522
    • /
    • 2005
  • This paper presents the design and analysis of the electromagnetic system such as jumping ring system. Also, we study the characteristics of dynamics for system with initial parameter. For the propose of system control,, first, we simulate the MATLAB tool solving coupled differential equations with electric parameter, inductance and mutual inductances. Therefore, we design a jumping ring system using design results, implement, and analyze the jumping ring system real situation. For the near time, we present a control process, and compare of real system and software technique.

  • PDF

ON FULLY FILIAL TORSION RINGS

  • Andruszkiewicz, Ryszard Romuald;Pryszczepko, Karol
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.1
    • /
    • pp.23-29
    • /
    • 2019
  • Rings in which all accessible subrings are ideals are called filial. A ring R is called fully filial if all its subrings are filial (that is rings in which the relation of being an ideal is transitive). The present paper is devoted to the study of fully filial torsion rings. We prove a classification theorem for semiprime fully filial torsion rings.

PRIME RADICALS OF SKEW LAURENT POLYNOMIAL RINGS

  • Han, Jun-Cheol
    • Bulletin of the Korean Mathematical Society
    • /
    • v.42 no.3
    • /
    • pp.477-484
    • /
    • 2005
  • Let R be a ring with an automorphism 17. An ideal [ of R is ($\sigma$-ideal of R if $\sigma$(I).= I. A proper ideal P of R is ($\sigma$-prime ideal of R if P is a $\sigma$-ideal of R and for $\sigma$-ideals I and J of R, IJ $\subseteq$ P implies that I $\subseteq$ P or J $\subseteq$ P. A proper ideal Q of R is $\sigma$-semiprime ideal of Q if Q is a $\sigma$-ideal and for a $\sigma$-ideal I of R, I$^{2}$ $\subseteq$ Q implies that I $\subseteq$ Q. The $\sigma$-prime radical is defined by the intersection of all $\sigma$-prime ideals of R and is denoted by P$_{(R). In this paper, the following results are obtained: (1) For a principal ideal domain R, P$_{(R) is the smallest $\sigma$-semiprime ideal of R; (2) For any ring R with an automorphism $\sigma$ and for a skew Laurent polynomial ring R[x, x$^{-1}$; $\sigma$], the prime radical of R[x, x$^{-1}$; $\sigma$] is equal to P$_{(R)[x, x$^{-1}$; $\sigma$ ].

EPICS Based Vacuum Chamber Temperature Control System for PAL Storage Ring (가속기 저장링 진공 챔버 온도측정용 제어시스템 개발 및 EPICS 적용)

  • Yoon, J.C.;Choi, J.Y.;Kang, H.S.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.2652-2654
    • /
    • 2005
  • A vacuum chamber temperature control system of Pohang Accelerator Laboratory (PAL) storage ring is a subsystem upgraded PAL control system, which is based upon Experimental Physics and Industrial Control System (EPICS) [1]. There are two control components, data acquisition system (SA120 data logger), development control system IOC (Input/Output Controller) at the storage ring of PAL. There are 240 vacuum chamber at the storage ring. It was a very important problem to solve how to monitor such a large number of vacuum chamber temperature distributed around the ring. The IOC connect MODBUS/JBUS field network to asynchronous serial ports for communication with serial device. It can simultaneously control up to 4 data acquisition systems. Upon receiving a command from a IOC running under Windows2k through the network, the IOC communicate through the slave serial interface ports to SA120. We added some software components on the top of EPICS toolkit. The design of the vacuum control system is discussed. This paper describes the development vacuum chamber temperature control system and how the design of this system.

  • PDF

REGULARITY RELATIVE TO A HEREDITARY TORSION THEORY FOR MODULES OVER A COMMUTATIVE RING

  • Qiao, Lei;Zuo, Kai
    • Journal of the Korean Mathematical Society
    • /
    • v.59 no.4
    • /
    • pp.821-841
    • /
    • 2022
  • In this paper, we introduce and study regular rings relative to the hereditary torsion theory w (a special case of a well-centered torsion theory over a commutative ring), called w-regular rings. We focus mainly on the w-regularity for w-coherent rings and w-Noetherian rings. In particular, it is shown that the w-coherent w-regular domains are exactly the Prüfer v-multiplication domains and that an integral domain is w-Noetherian and w-regular if and only if it is a Krull domain. We also prove the w-analogue of the global version of the Serre-Auslander-Buchsbaum Theorem. Among other things, we show that every w-Noetherian w-regular ring is the direct sum of a finite number of Krull domains. Finally, we obtain that the global weak w-projective dimension of a w-Noetherian ring is 0, 1, or ∞.

THE STRUCTURE OF SEMIPERFECT RINGS

  • Han, Jun-Cheol
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.2
    • /
    • pp.425-433
    • /
    • 2008
  • Let R be a ring with identity $1_R$ and let U(R) denote the group of all units of R. A ring R is called locally finite if every finite subset in it generates a finite semi group multiplicatively. In this paper, some results are obtained as follows: (1) for any semilocal (hence semiperfect) ring R, U(R) is a finite (resp. locally finite) group if and only if R is a finite (resp. locally finite) ring; U(R) is a locally finite group if and only if U$(M_n(R))$ is a locally finite group where $M_n(R)$ is the full matrix ring of $n{\times}n$ matrices over R for any positive integer n; in addition, if $2=1_R+1_R$ is a unit in R, then U(R) is an abelian group if and only if R is a commutative ring; (2) for any semiperfect ring R, if E(R), the set of all idempotents in R, is commuting, then $R/J\cong\oplus_{i=1}^mD_i$ where each $D_i$ is a division ring for some positive integer m and |E(R)|=$2^m$; in addition, if 2=$1_R+1_R$ is a unit in R, then every idempotent is central.