DOI QR코드

DOI QR Code

ON FULLY FILIAL TORSION RINGS

  • Received : 2018.01.09
  • Accepted : 2018.11.21
  • Published : 2019.01.31

Abstract

Rings in which all accessible subrings are ideals are called filial. A ring R is called fully filial if all its subrings are filial (that is rings in which the relation of being an ideal is transitive). The present paper is devoted to the study of fully filial torsion rings. We prove a classification theorem for semiprime fully filial torsion rings.

Keywords

References

  1. R. R. Andruszkiewicz, The classification of integral domains in which the relation of being an ideal is transitive, Comm. Algebra 31 (2003), no. 5, 2067-2093. https://doi.org/10.1081/AGB-120018987
  2. R. R. Andruszkiewicz and K. Pryszczepko, A classification of commutative reduced filial rings, Comm. Algebra 37 (2009), no. 11, 3820-3826. https://doi.org/10.1080/00927870802545703
  3. R. R. Andruszkiewicz and K. Pryszczepko, On commutative reduced filial rings, Bull. Aust. Math. Soc. 81 (2010), no. 2, 310-316. https://doi.org/10.1017/S0004972709000847
  4. R. Andruszkiewicz and E. R. Puczylowski, On filial rings, Portugal. Math. 45 (1988), no. 2, 139-149.
  5. R. F. Arens and I. Kaplansky, Topological representation of algebras, Trans. Amer. Math. Soc. 63 (1948), 457-481. https://doi.org/10.1090/S0002-9947-1948-0025453-6
  6. H. E. Bell, On commutativity of periodic rings and near-rings, Acta Math. Acad. Sci. Hungar. 36 (1980), no. 3-4, 293-302 (1981). https://doi.org/10.1007/BF01898145
  7. T. Chinburg and M. Henriksen, Multiplicatively periodic rings, Amer. Math. Monthly 83 (1976), no. 7, 547-549. https://doi.org/10.1080/00029890.1976.11994165
  8. G. Ehrlich, Filial rings, Portugal. Math. 42 (1983/84), no. 2, 185-194.
  9. M. Filipowicz and E. R. Puczyiowski, Left filial rings, Algebra Colloq. 11 (2004), no. 3, 335-344.
  10. M. Filipowicz and E. R. Puczylowski, On filial and left filial rings, Publ. Math. Debrecen 66 (2005), no. 3-4, 257-267.
  11. R. Gilmer, Commutative rings with periodic multiplicative semigroup, Comm. Algebra 21 (1993), no. 11, 4025-4028. https://doi.org/10.1080/00927879308824781
  12. N. Jacobson, Structure of Rings, American Mathematical Society, Colloquium Publications, vol. 37, American Mathematical Society, 190 Hope Street, Prov., RI, 1956.
  13. D. I. C. Mendes, Strongly filial rings, Beitr. Algebra Geom. 57 (2016), no. 4, 831-840. https://doi.org/10.1007/s13366-015-0261-7
  14. H. Schoutens, The Use of Ultraproducts in Commutative Algebra, Lecture Notes in Mathematics, 1999, Springer-Verlag, Berlin, 2010.