References
- R. R. Andruszkiewicz, The classification of integral domains in which the relation of being an ideal is transitive, Comm. Algebra 31 (2003), no. 5, 2067-2093. https://doi.org/10.1081/AGB-120018987
- R. R. Andruszkiewicz and K. Pryszczepko, A classification of commutative reduced filial rings, Comm. Algebra 37 (2009), no. 11, 3820-3826. https://doi.org/10.1080/00927870802545703
- R. R. Andruszkiewicz and K. Pryszczepko, On commutative reduced filial rings, Bull. Aust. Math. Soc. 81 (2010), no. 2, 310-316. https://doi.org/10.1017/S0004972709000847
- R. Andruszkiewicz and E. R. Puczylowski, On filial rings, Portugal. Math. 45 (1988), no. 2, 139-149.
- R. F. Arens and I. Kaplansky, Topological representation of algebras, Trans. Amer. Math. Soc. 63 (1948), 457-481. https://doi.org/10.1090/S0002-9947-1948-0025453-6
- H. E. Bell, On commutativity of periodic rings and near-rings, Acta Math. Acad. Sci. Hungar. 36 (1980), no. 3-4, 293-302 (1981). https://doi.org/10.1007/BF01898145
- T. Chinburg and M. Henriksen, Multiplicatively periodic rings, Amer. Math. Monthly 83 (1976), no. 7, 547-549. https://doi.org/10.1080/00029890.1976.11994165
- G. Ehrlich, Filial rings, Portugal. Math. 42 (1983/84), no. 2, 185-194.
- M. Filipowicz and E. R. Puczyiowski, Left filial rings, Algebra Colloq. 11 (2004), no. 3, 335-344.
- M. Filipowicz and E. R. Puczylowski, On filial and left filial rings, Publ. Math. Debrecen 66 (2005), no. 3-4, 257-267.
- R. Gilmer, Commutative rings with periodic multiplicative semigroup, Comm. Algebra 21 (1993), no. 11, 4025-4028. https://doi.org/10.1080/00927879308824781
- N. Jacobson, Structure of Rings, American Mathematical Society, Colloquium Publications, vol. 37, American Mathematical Society, 190 Hope Street, Prov., RI, 1956.
- D. I. C. Mendes, Strongly filial rings, Beitr. Algebra Geom. 57 (2016), no. 4, 831-840. https://doi.org/10.1007/s13366-015-0261-7
- H. Schoutens, The Use of Ultraproducts in Commutative Algebra, Lecture Notes in Mathematics, 1999, Springer-Verlag, Berlin, 2010.