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ON FULLY FILIAL TORSION RINGS

Ryszard Romuald Andruszkiewicz and Karol Pryszczepko

Abstract. Rings in which all accessible subrings are ideals are called
filial. A ring R is called fully filial if all its subrings are filial (that is rings
in which the relation of being an ideal is transitive). The present paper is
devoted to the study of fully filial torsion rings. We prove a classification
theorem for semiprime fully filial torsion rings.

1. Introduction and preliminaries

All rings considered are associative and do not necessarily have unity. To
denote that I is an ideal of a ring R we write I C R. A ring R is called fully
filial if A C B and B C C imply A C C for all subrings A, B, C of R. A ring
R is called filial if A C B and B C R imply A C R for all subrings A, B of R.
Obviously a fully filial ring is a ring in which every subring is filial. Filial rings
and related topics were studied in many papers (cf. [1, 2, 4, 8–10,13]).

The symbols N, Z, P stand for the set of natural numbers, the set of integers
and the set of all prime numbers, respectively. The prime field of characteristic
p is denoted by Zp. In the current paper, for a subset S of a ring R, we denote
by 〈S〉, [S], SR the subgroup of R+ (the additive group of R) generated by S,
the subring of R generated by S, the ideal of R generated by S, respectively.
Moreover, T (R) = {x ∈ R : nx = 0 for some n ∈ N} and Rp = {x ∈ R :
pnx = 0 for some n ∈ N} for any p ∈ P. If the additive group R+ of the ring R
is a p-group, then we say that R is a p-ring. The order of an element a ∈ R+

is denoted by o(a).
Note (cf. [4, Theorem 1]) that a ring S is filial if and only if (a)S = (a)2S+〈a〉

for every a ∈ S, where (a)S denotes the ideal of the ring S generated by a. A
ring R is strongly regular if a ∈ Ra2 for every a ∈ R. It is well-known that
all strongly regular rings are von Neumann regular, and that for commutative
rings these two properties coincide. One can easily check that every strongly
regular ring is filial.
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2. Preliminary results

Lemma 2.1. For a given ring R, the following conditions are equivalent:
(i) R is fully filial,
(ii) for any a, b ∈ R the subring [a, b] is filial.

Proof. (ii)⇒(i). Let S be any subring of R and let a ∈ S. We claim that
(a)S ⊆ (a)2S + 〈a〉. Let b ∈ S. Then, by filiality of the ring [a, b], we have
[a, b]a+ a[a, b] ⊆ (a)[a,b] = (a)2[a,b] + 〈a〉 ⊆ (a)2S + 〈a〉, hence (a)S ⊆ (a)2S + 〈a〉.

The implication (i)⇒(ii) is obvious. �

Clearly, every subring and every homomorphic image of a fully filial ring is
fully filial.

Note that the ring Q⊕Q is not fully filial since its subring Z⊕Z is not filial.
Now we state some positive results.

Lemma 2.2. Let S be an ideal of the ring R such that every subring of S is
strongly regular and the ring R/S is fully filial. Then R is fully filial.

Proof. Let A be any subring of R. Then the ring (A+S)/S is filial as a subring
of the fully filial ring R/S. Moreover, (A+ S)/S ∼= A/(A ∩ S) and A ∩ S is a
subring of S, so A∩ S is strongly regular. From Proposition 3 of [4] we obtain
that A is filial. �

Lemma 2.3. Let R be a torsion ring. Then R is fully filial if and only if the
ring Rp is fully filial for every prime integer p.

Proof. Since R is torsion, R =
⊕

p∈P Rp. If R is fully filial, then obviously
every subring of R is fully filial.

Conversely, let Rp be a fully filial ring for every p ∈ P and let K be any
subring of R. Then K =

⊕
p∈P(K ∩ Rp). Let I C K and J C I. Since

K ∩Rp is fully filial as a subring of Rp, we have J ∩Rp CK ∩Rp. Moreover,
(J ∩Rp)(K ∩Rq) = {0} for every p 6= q. Hence J =

⊕
p∈P(J ∩Rp)CK. �

By the above Lemma, the description of torsion fully filial rings is reduced
to the description of fully filial p-rings.

3. Reduced torsion fully filial rings

A ring R is called reduced if it has no nonzero nilpotent elements; that is
x ∈ R and x2 = 0 implies x = 0. An element x of a ring S is called potent if
xn = x for some positive integer n > 1. A ring S in which every element is
potent is called a J-ring. It is well-known that every J-ring is strongly regular
and commutative (cf. [12]). The structure of J-rings was studied by many
authors (cf. [6, 7, 11]) and the description of J-rings which are p-rings can be
found, for instance, in [5, Theorem 6.2] or in [14, Corollary B.3.5].

Proposition 3.1. Let p be a prime integer and let R be a reduced p-ring. Then
the following conditions are equivalent:
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(i) R is fully filial,
(ii) for any a ∈ R the ring [a] is isomorphic to some direct sum of finite

fields of characteristic p,
(iii) for any a ∈ R there exists n ∈ N such that ap

n

= a,
(iv) for any a ∈ R the ring [a] is strongly regular,
(v) every subring of R is strongly regular.

Proof. (i)⇒(ii). From the assumptions it follows that, for any a ∈ R, the
ring [a] is commutative, torsion, reduced and filial. Moreover, [a] is finitely
generated and from Theorem 2.4 of [3] we have that [a] ∼=

⊕k
j=1 Fj for some

finite fields F1, F2, . . . , Fk.
The implications (ii)⇒(iii), (iii)⇒(iv) and (iv)⇒(v) are obvious.
(v)⇒(i). Let A be any subring of R and let x ∈ A. Then x ∈ [x]x2 ⊆ Ax2

and consequently A is strongly regular and hence filial. �

From Proposition 3.1 and Lemma 2.3 we immediately get the following corol-
lary.

Corollary 3.2. A reduced torsion ring is fully filial if and only if it is a J-ring.

4. Main examples

Lemma 4.1. Let p be any prime integer and let R be a non filial ring such that
pR = {0} and |R| = p3. Then there exist elements x, y ∈ R that are linearly
independent over Zp such that x2 = y2 = xy = yx = 0.

Proof. Clearly, R+ ∼= Z+
p × Z+

p × Z+
p . Since R is not filial, there exist subrings

A,B of R such that ACB CR, but A is not an ideal of R. But |R| = p3 and
A 6= B, so |B| = p2 and |A| = p. Hence A2 = A or A2 = {0}. If A2 = A, then
RA = RA2 ⊆ RBA ⊆ BA ⊆ A (similarly, AR ⊆ A) and consequently ACR, a
contradiction. Hence A2 = {0}. Moreover, A = 〈x〉 for some x ∈ A. Note that
x2 = 0 and o(x) = p. Next AR ⊆ B and by Andrunakievich’s Lemma, A3

R ⊆ A.
But |A| = p, so A3

R = A or A3
R = {0}. If A3

R = A, then ACR, a contradiction.
Thus A3

R = {0}. Moreover, A ( AR ⊆ B, so since |B| = p2, we have AR = B
and consequently 〈x〉R = B. If A2

R 6= {0}, then since A2
R 6= AR, |A2

R| = p. Also,
it cannot happen that x ∈ A2

R because that would imply that 〈x〉 = A2
R and

〈x〉CR, a contradiction. Hence 〈x〉 ⊕A2
R = AR and A⊕A2

R = AR. But, then
A2

R = A2⊕A4
R = {0}, which is a contradiction. It follows that A2

R = {0}. Thus
there exists y ∈ AR such that AR = 〈x〉 ⊕ 〈y〉 and x2 = y2 = xy = yx = 0. �

For a natural number n and any ring R, let Mn(R) denote the ring of n×n
matrices over R. An n× n matrix whose entries are all zeros is denoted by 0n.

Lemma 4.2. Let K be any field and let X,Y ∈M2(K). If X2 = Y 2 = XY =
Y X = 02, then X and Y are linearly dependent over K.

Proof. Let X,Y ∈ M2(K) be such that X2 = Y 2 = XY = Y X = 02 and sup-
pose that X and Y are linearly independent over K. Then the linear subspace
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S generated by X and Y is of dimension two over K. Moreover, S is not an
ideal of the ring M2(K) since M2(K) is a simple ring and S2 = {02}. Then
there exists a matrix A ∈ M2(K) such that AX /∈ S or XA /∈ S or AY /∈ S
or Y A /∈ S. Without loss of generality, assume that AX /∈ S. Then vectors
X,Y,AX are linearly independent over K. We claim that vectors X,Y,AX,A
are linearly independent over K. Assume that aX + bY + cAX + dA = 02 for
some a, b, c, d ∈ K. Multipling this equality by X we get that dAX = 02 and
d = 0, consequently by linear independence of X,Y,AX we have a = b = c = 0.
Therefore vectors X,Y,AX,A are linearly independent over K and form a basis
of the vector space M2(K) over K. Hence aX + bY + cAX + dA = ( 1 0

0 1 ) for
some a, b, c, d ∈ K and multipling this equality by X we get that dAX = X,
which is a contradiction, since X,Y,AX,A are linearly independent. �

Example 4.3. For every prime integer p the ring M2(Zp) is fully filial. We
will show that every subring A of M2(Zp) is filial. If A = M2(Zp), then A is
filial as a simple ring. If |A| < p3, then the statement is obvious. Finally, if
|A| = p3, then A is filial by Lemmas 4.1 and 4.2.

Note that if [a] is a ring generated by a single element a such that a2 = 0
and o(a) = p, then the ring S = M2(Zp) × [a] is not fully filial since A =

〈(( 0 1
0 0 ) , a)〉C

(
0 Zp

0 0

)
× [a]C

( Zp Zp

0 0

)
× [a] = S and A is not an ideal of S because

(( 1 0
0 0 ) , 0) · (( 0 1

0 0 ) , a) 6∈ A. In particular, the ring M2(Zp)×M2(Zp) is not fully
filial.

Lemma 4.4. Let R be any ring. Assume that every subgroup A of R+ is an
ideal of R and RA = AR = A3. Then R2 = {0} or R is torsion and R2

p = {0}
or Rp

∼= Zp for every prime integer p.

Proof. Let A and B be any subgroups of R+ such that A ⊆ B. Then BA ⊆
RA = A3 ⊆ A2 ⊆ BA, so BA = A3 = A2. Similarly, one can show that
AB = A2 = A3. Hence, by simple induction, BA = AB = An for every
n = 2, 3, . . .. Assume that T (R) 6= R. We will show that R2 = {0}. Assume
that R2 6= {0} and take any x ∈ R such that o(x) = ∞. If x2 6= 0, then since
x2 ∈ 〈x〉, we have x2 = kx for some k ∈ Z \ {0}. Moreover, 〈x〉 · 〈2x〉 = 〈2x〉3,
so 〈2x2〉 = 〈8x3〉. Moreover, x3 = kx2 = k2x and hence 2kx = t ·8k2x for some
t ∈ Z. Thus since o(x) = ∞ and k 6= 0 we get that 2 = 8kt, a contradiction.
Consequently x2 = 0. But R〈x〉 = 〈x〉R = 〈x〉2, so Rx = xR = {0}. Since
R2 6= {0}, there exist a, b ∈ T (R) such that ab 6= 0. Moreover, ab ∈ 〈a〉2 = 〈a2〉,
so a2 6= 0. Obviously o(x+a) =∞, so 0 = (x+a)a = xa+a2 = 0+a2 = a2 6= 0,
a contradiction. Hence, if T (R) 6= R, then R2 = {0}.

Now, assume that R = T (R) and fix any prime integer p. Assume that R2
p 6=

{0}. Then there exist a, b ∈ Rp such that ab 6= 0. But ab ∈ 〈a〉2, so a2 6= 0.
Moreover, for any natural number n ≥ 2 we have 〈a2〉 = 〈a〉2 = 〈a〉n = 〈an〉,
so an 6= 0. But a2 ∈ 〈a〉, so a2 = Ka for some K ∈ Z. Hence, by a simple
induction argument an = Kn−1a for every n = 2, 3, . . .. Since o(a) = ps for
some s ∈ N and as was proved, element a is not nilpotent, p does not divide
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K. Hence there exists L ∈ Z such that KL ≡ 1 (mod p). Then e = La is
an idempotent and o(e) = o(a) = ps. Thus 〈e〉 · 〈pe〉 = 〈pe〉s = {0}, hence
pe2 = 0 and pe = 0. Consequently 〈e〉 = [e] ∼= Zp is an ideal of Rp and [e] has
an identity element. Therefore [e] ⊕ I = Rp for some I C Rp. Take any i ∈ I.
Then e(e+ i) ∈ 〈e+ i〉, so e(e+ i) = U(e+ i) for some U ∈ Z. But ei = 0, so
e(e + i) = e2 + ei = e and e = Ue + Ui. Thus e = Ue and Ui = 0. Hence p
does not divide U and i = 0. Finally, I = {0} and Rp = [e] ∼= Zp. �

Theorem 4.5. Let n > 1 be any natural number and let R be any ring. The
ring Mn(R) is fully filial if and only if

(i) n > 2, R2 = {0}, or
(ii) n = 2 and R2 = {0} or R =

⊕
p∈P Rp and R2

p = {0} or Rp
∼= Zp for

every prime integer p.

Proof. (i) Let n ≥ 3 and assume that the ring Mn(R) is fully filial. Since
the ring M3(R) embeds in Mn(R), it follows that M3(R) is fully filial. But(

0 R 0
0 0 0
0 0 0

)
C
(

0 R R
0 0 0
0 0 0

)
C
(

0 R R
0 0 R
0 0 0

)
, so

(
0 R 0
0 0 0
0 0 0

)
C
(

0 R R
0 0 R
0 0 0

)
, and hence R2 = {0}.

The converse is obvious.
(ii) Assume that the ring M2(R) is fully filial and let A be any subgroup of

R+. Then ( 0 A
0 0 )C ( 0 R

0 0 )C (R R
0 0 ), so ( 0 A

0 0 )C (R R
0 0 ), hence RA ⊆ A. Similarly,

( 0 A
0 0 )C ( 0 R

0 0 )C ( 0 R
0 R ), which implies that AR ⊆ A. Thus AC R. Hence, and

by filiality of M2(R) and Theorem 14 of [10] we have RA = AR = A3. By the
above and Lemma 4.4 we obtain that R2 = {0} or R is torsion and, for every
prime integer p, R2

p = {0} or Rp
∼= Zp.

The converse implication is obvious when R2 = {0}. If not, then R =⊕
p∈P Rp and R2

p = {0} or Rp
∼= Zp for every prime integer p. Hence M2(R) ∼=⊕

p∈P M2(Rp) and by Lemma 2.3 it is enough to show that for every prime
integer p the ring M2(Rp) is fully filial. If R2

p = {0}, then this is obvious, and
if Rp

∼= Zp, then it follows from Example 4.3. �

5. Semiprime torsion fully filial rings

An ideal I of a ring R is semiprime if it is an intersection of prime ideals.
A ring R is semiprime in case {0} is a semiprime ideal of R. It is well-known
that a ring is semiprime if and only if it has no non-zero nilpotent ideals or
equivalently, xRx = {0} implies x = 0 for all x ∈ R.

Theorem 5.1. For every semiprime p-ring R the following conditions are
equivalent:

(i) R is fully filial,
(ii) R is a J-ring or R ∼= J × M2(Zp), where J is a J-ring such that

pJ = {0}.

Proof. (i)⇒(ii). Since R is semiprime, pR = {0}. If R is reduced, then by
Corollary 3.2, R is a J-ring. Assume that R is not reduced. Then there exists
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a nonzero a ∈ R such that a2 = 0. Then [a] = 〈a〉, |[a]| = p and, since R
is semiprime, aRa 6= {0}. Moreover, [a] C [a] + aRa C [a] + Ra. Since R is
fully filial, we have [a] C [a] + Ra. Hence aRa ⊆ [a] and |[a]| = p ∈ P implies
aRa = [a] = 〈a〉. Thus a = aba for some b ∈ R. Denote: e = ab and f = ba.
Then a = ea = fa = eaf , ae = fa = fe = 0, e = e2, f = f2, and e, f 6= 0
because a 6= 0. Moreover, eRe = abRab ⊆ (aRa)b = 〈a〉b = 〈ab〉 = 〈e〉 and
e = e3 ∈ eRe, so eRe = 〈e〉. But e = e2 6= 0 and pe = 0, so [e] = 〈e〉 ∼= Zp.
From above, eRe is a division ring and therefore, since R is semiprime, we
obtain that Re is a minimal left ideal of R.

Similarly, one can show that fRf = 〈f〉 = [f ] ∼= Zp, so Rf is a minimal left
ideal of R.

Since e and f are idempotents, Re ⊕ lR(e) = R and Rf ⊕ lR(f) = R.
But fe = 0, so Rf ⊆ lR(e) and, by the modularity law for the lattice of
subgroups of R+, we obtain lR(e) = Rf ⊕ [lR(e) ∩ lR(f)] and this implies that
R = Re⊕Rf ⊕ [lR(e) ∩ lR(f)] which is a direct sum of left ideals of a ring R.
Denote: L = lR(e) ∩ lR(f). Then Le = Lf = {0}. But a = ea, so La = {0}.
Hence, [a]C [a] + aLC [a] +L. Since R is fully filial, [a]C [a] +L and aL ⊆ [a].
But a = af ∈ Rf , so aL ⊆ Rf ∩ L = {0} and therefore aL = {0}. Hence,
fL = baL = {0} and eL = abL ⊆ aL = {0}. Next, LRe is a left ideal of R and
LRe ⊆ Re, by minimality of Re. If LRe 6= {0}, then LRe = Re. Therefore
0 = eLRe = eRe = [e] 6= {0}, a contradiction. Thus LRe = {0}. Similarly,
LRf = {0}. But Re⊕Rf ⊕ L = R, so LCR and S = Re⊕Rf CR. Hence S
is semiprime, fully filial and every left ideal of S is a left ideal of R. Thus Re
and Rf are minimal ideals of S. Recall that a ∈ S, so S is not reduced. From
the Wedderburn-Artin Theorem it follows that, S ∼= M2(D) for some division
p-ring D. Theorem 4.5 implies that S ∼= M2(Zp).

If L = {0}, then R ∼= M2(Zp). If L 6= {0}, then L is semiprime and fully
filial. If L is not reduced, then by the first part of the proof, L has no ideal
J ∼= M2(Zp). Therefore S ⊕ J ∼= M2(Zp)×M2(Zp) and the ring S ⊕ J is fully
filial which contradicts Example 4.3. Finally, L is reduced and by Corollary
3.2, L is a J-ring.

(ii)⇒(i). If R is a J-ring, then the conclusion follows from Corollary 3.2. If
R ∼= J ×M2(Zp), where J is a J-ring, then it follows from Example 4.3 that
R/J ∼= M2(Zp) is fully filial. Moreover, by Proposition 3.1 every subring of J
is strongly regular. Combining these observations, we conclude from Lemma
2.2 that R is fully filial. �

Finally, the next theorem is a direct consequence of the theorem above and
its proof, and Proposition 2.3.

Theorem 5.2. A torsion ring R is fully filial and semiprime if and only if
R =

⊕
p∈P Rp, where Rp is a J-ring or Rp

∼= J ×M2(Zp) for some J-ring such
that pJ = {0} for every prime integer p.
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