• Title/Summary/Keyword: J-graph

Search Result 229, Processing Time 0.022 seconds

Graph Equations Involving Tensor Product of Graphs

  • Patil, H.P.;Raja, V.
    • Kyungpook Mathematical Journal
    • /
    • v.57 no.2
    • /
    • pp.301-307
    • /
    • 2017
  • In this paper, we solve the following four graph equations $L^k(G)=H{\oplus}J$; $M(G)=H{\oplus}J$; ${\bar{L^k(G)}}=H{\oplus}J$ and ${\bar{M(G)}}=H{\oplus}J$, where J is $nK_2$ for $n{\geq}1$. Here, the equality symbol = means the isomorphism between the corresponding graphs. In particular, we shall obtain all pairs of graphs (G, H), which satisfy the above mentioned equations, upto isomorphism.

The Number of Maximal Independent sets of the Graph with joining Moon-Moser Graph and Complete Graph (Moon-Moser 그래프와 완전그래프를 결합한 그래프의 극대독립집합의 개수)

  • Chung, S.J.;Lee, C.S.
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.20 no.4
    • /
    • pp.65-72
    • /
    • 1994
  • An independent set of nodes is a set of nodes no two of which are joined by an edge. An independent set is called maximal if no more nodes can be added to the set without destroying its independence. The greatest number of maximal independent set is the maximum possible number of maximal independent set of a graph. We consider the greatest number of maximal independent set in connected graphs with fixed numbers of edges and nodes. For arbitrary number of nodes with a certain class of number of edges, we present the connected graphs with the greatest number of maximal independent set. For a given class of number of edges, the structure of graphs with the greatest number of maximal independent set is that the two components are completely joined; one consists of disjoint triangles as many as possible and the other is the complete graph with remaining nodes.

  • PDF

BIPACKING A BIPARTITE GRAPH WITH GIRTH AT LEAST 12

  • Wang, Hong
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.1
    • /
    • pp.25-37
    • /
    • 2019
  • Let G be a bipartite graph with (X, Y ) as its bipartition. Let B be a complete bipartite graph with a bipartition ($V_1$, $V_2$) such that $X{\subseteq}V_1$ and $Y{\subseteq}V_2$. A bi-packing of G in B is an injection ${\sigma}:V(G){\rightarrow}V(B)$ such that ${\sigma}(X){\subseteq}V_1$, ${\sigma}(Y){\subseteq}V_2$ and $E(G){\cap}E({\sigma}(G))={\emptyset}$. In this paper, we show that if G is a bipartite graph of order n with girth at least 12, then there is a complete bipartite graph B of order n + 1 such that there is a bi-packing of G in B. We conjecture that the same conclusion holds if the girth of G is at least 8.

ON PATHOS BLOCK LINE CUT-VERTEX GRAPH OF A TREE

  • Nagesh, Hadonahalli Mudalagiraiah
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.1
    • /
    • pp.1-12
    • /
    • 2020
  • A pathos block line cut-vertex graph of a tree T, written P BLc(T), is a graph whose vertices are the blocks, cut-vertices, and paths of a pathos of T, with two vertices of P BLc(T) adjacent whenever the corresponding blocks of T have a vertex in common or the edge lies on the corresponding path of the pathos or one corresponds to a block Bi of T and the other corresponds to a cut-vertex cj of T such that cj is in Bi; two distinct pathos vertices Pm and Pn of P BLc(T) are adjacent whenever the corresponding paths of the pathos Pm(vi, vj) and Pn(vk, vl) have a common vertex. We study the properties of P BLc(T) and present the characterization of graphs whose P BLc(T) are planar; outerplanar; maximal outerplanar; minimally nonouterplanar; eulerian; and hamiltonian. We further show that for any tree T, the crossing number of P BLc(T) can never be one.

PEBBLING ON THE MIDDLE GRAPH OF A COMPLETE BINARY TREE

  • LOURDUSAMY, A.;NELLAINAYAKI, S. SARATHA;STEFFI, J. JENIFER
    • Journal of applied mathematics & informatics
    • /
    • v.37 no.3_4
    • /
    • pp.163-176
    • /
    • 2019
  • Given a distribution of pebbles on the vertices of a connected graph G, a pebbling move is defined as the removal of two pebbles from some vertex and the placement of one of those pebbles at an adjacent vertex. The t-pebbling number, $f_t(G)$, of a connected graph G, is the smallest positive integer such that from every placement of $f_t(G)$ pebbles, t pebbles can be moved to any specified vertex by a sequence of pebbling moves. A graph G has the 2t-pebbling property if for any distribution with more than $2f_t(G)$ - q pebbles, where q is the number of vertices with at least one pebble, it is possible, using the sequence of pebbling moves, to put 2t pebbles on any vertex. In this paper, we determine the t-pebbling number for the middle graph of a complete binary tree $M(B_h)$ and we show that the middle graph of a complete binary tree $M(B_h)$ satisfies the 2t-pebbling property.

SOME RESULTS ON STARLIKE TREES AND SUNLIKE GRAPHS

  • Mirko, Lepovic
    • Journal of applied mathematics & informatics
    • /
    • v.11 no.1_2
    • /
    • pp.109-123
    • /
    • 2003
  • A tree is called starlike if it has exactly one vertex of degree greate. than two. In [4] it was proved that two starlike trees G and H are cospectral if and only if they are isomorphic. We prove here that there exist no two non-isomorphic Laplacian cospectral starlike trees. Further, let G be a simple graph of order n with vertex set V(G) : {1,2, …, n} and let H = {$H_1$, $H_2$, …, $H_{n}$} be a family of rooted graphs. According to [2], the rooted product G(H) is the graph obtained by identifying the root of $H_{i}$ with the i-th vertex of G. In particular, if H is the family of the paths $P_k_1,P_k_2,...P_k_2$ with the rooted vertices of degree one, in this paper the corresponding graph G(H) is called the sunlike graph and is denoted by G($k_1,k_2,...k_n$). For any $(x_1,x_2,...,x_n)\;\in\;{I_*}^n$, where $I_{*}$ = : {0,1}, let G$(x_1,x_2,...,x_n)$ be the subgraph of G which is obtained by deleting the vertices $i_1,i_2,...i_j\;\in\;V(G)\;(O\leq j\leq n)$, provided that $x_i_1=x_i_2=...=x_i_j=o.\;Let \;G[x_1,x_2,...x_n]$ be characteristic polynomial of G$(x_1,x_2,...,x_n)$, understanding that G[0,0,...,0] $\equiv$1. We prove that $G[k_1,k_2,...,k_n]-\sum_{x\in In}[{\prod_{\imath=1}}^n\;P_k_i+x_i-2(\lambda)](-1)...G[x_1,x_2,...,X_n]$ where x=($x_1,x_2,...,x_n$);G[$k_1,k_2,...,k_n$] and $P_n(\lambda)$ denote the characteristic polynomial of G($k_1,k_2,...,k_n$) and $P_n$, respectively. Besides, if G is a graph with $\lambda_1(G)\;\geq1$ we show that $\lambda_1(G)\;\leq\;\lambda_1(G(k_1,k_2,...,k_n))<\lambda_1(G)_{\lambda_1}^{-1}(G}$ for all positive integers $k_1,k_2,...,k_n$, where $\lambda_1$ denotes the largest eigenvalue.

THE FORCING NONSPLIT DOMINATION NUMBER OF A GRAPH

  • John, J.;Raj, Malchijah
    • Korean Journal of Mathematics
    • /
    • v.29 no.1
    • /
    • pp.1-12
    • /
    • 2021
  • A dominating set S of a graph G is said to be nonsplit dominating set if the subgraph ⟨V - S⟩ is connected. The minimum cardinality of a nonsplit dominating set is called the nonsplit domination number and is denoted by ��ns(G). For a minimum nonsplit dominating set S of G, a set T ⊆ S is called a forcing subset for S if S is the unique ��ns-set containing T. A forcing subset for S of minimum cardinality is a minimum forcing subset of S. The forcing nonsplit domination number of S, denoted by f��ns(S), is the cardinality of a minimum forcing subset of S. The forcing nonsplit domination number of G, denoted by f��ns(G) is defined by f��ns(G) = min{f��ns(S)}, where the minimum is taken over all ��ns-sets S in G. The forcing nonsplit domination number of certain standard graphs are determined. It is shown that, for every pair of positive integers a and b with 0 ≤ a ≤ b and b ≥ 1, there exists a connected graph G such that f��ns(G) = a and ��ns(G) = b. It is shown that, for every integer a ≥ 0, there exists a connected graph G with f��(G) = f��ns(G) = a, where f��(G) is the forcing domination number of the graph. Also, it is shown that, for every pair a, b of integers with a ≥ 0 and b ≥ 0 there exists a connected graph G such that f��(G) = a and f��ns(G) = b.

RECOGNITION OF STRONGLY CONNECTED COMPONENTS BY THE LOCATION OF NONZERO ELEMENTS OCCURRING IN C(G) = (D - A(G))-1

  • Kim, Koon-Chan;Kang, Young-Yug
    • Bulletin of the Korean Mathematical Society
    • /
    • v.41 no.1
    • /
    • pp.125-135
    • /
    • 2004
  • One of the intriguing and fundamental algorithmic graph problems is the computation of the strongly connected components of a directed graph G. In this paper we first introduce a simple procedure for determining the location of the nonzero elements occurring in $B^{-1}$ without fully inverting B, where EB\;{\equiv}\;(b_{ij)\;and\;B^T$ are diagonally dominant matrices with $b_{ii}\;>\;0$ for all i and $b_{ij}\;{\leq}\;0$, for $i\;{\neq}\;j$, and then, as an application, show that all of the strongly connected components of a directed graph G can be recognized by the location of the nonzero elements occurring in the matrix $C(G)\;=\;(D\;-\;A(G))^{-1}$. Here A(G) is an adjacency matrix of G and D is an arbitrary scalar matrix such that (D - A(G)) becomes a diagonally dominant matrix.

AUTOMORPHISMS OF THE ZERO-DIVISOR GRAPH OVER 2 × 2 MATRICES

  • Ma, Xiaobin;Wang, Dengyin;Zhou, Jinming
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.3
    • /
    • pp.519-532
    • /
    • 2016
  • The zero-divisor graph of a noncommutative ring R, denoted by ${\Gamma}(R)$, is a graph whose vertices are nonzero zero-divisors of R, and there is a directed edge from a vertex x to a distinct vertex y if and only if xy = 0. Let $R=M_2(F_q)$ be the $2{\times}2$ matrix ring over a finite field $F_q$. In this article, we investigate the automorphism group of ${\Gamma}(R)$.