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PEBBLING ON THE MIDDLE GRAPH OF A COMPLETE
BINARY TREE

A. LOURDUSAMY∗, S. SARATHA NELLAINAYAKI AND J. JENIFER STEFFI

Abstract. Given a distribution of pebbles on the vertices of a connected
graph G, a pebbling move is defined as the removal of two pebbles from
some vertex and the placement of one of those pebbles at an adjacent
vertex. The t-pebbling number, ft(G), of a connected graph G, is the
smallest positive integer such that from every placement of ft(G) pebbles,
t pebbles can be moved to any specified vertex by a sequence of pebbling
moves. A graph G has the 2t-pebbling property if for any distribution with
more than 2ft(G) − q pebbles, where q is the number of vertices with at
least one pebble, it is possible, using the sequence of pebbling moves, to
put 2t pebbles on any vertex. In this paper, we determine the t-pebbling
number for the middle graph of a complete binary tree M(Bh) and we
show that the middle graph of a complete binary tree M(Bh) satisfies the
2t-pebbling property.

Key words and phrases : t-pebbling number, 2t-pebbling property, middle
graph, complete binary tree.

1. Introduction

Pebbling in graphs was first considered by Chung [1]. Consider a connected
graph with fixed number of pebbles distributed on its vertices. A pebbling move
consists of the removal of two pebbles from a vertex and placement of one of
those pebbles at an adjacent vertex. The pebbling number of a vertex v in
a graph G is the smallest number f(G, v) such that for every placement of
f(G, v) pebbles, it is possible to move a pebble to v by a sequence of pebbling
moves. The t-pebbling number of v in G is the smallest number ft(G, v) such that
from every placement of ft(G, v) pebbles, it is possible to move t pebbles to v.
Then the pebbling number of G and the t-pebbling number of G are the smallest
numbers, f(G) and ft(G), such that from any distribution of f(G) pebbles or
ft(G) pebbles, respectively, it is possible to move one or t pebbles, respectively,
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to any specified target vertex by a sequence of pebbling moves. Thus f(G) and
ft(G) are the maximum values of f(G, v) and ft(G, v) over all vertices v.

Given a pebbling of G, let p be the number of pebbles, q be the number of
vertices with at least one pebble, we say that G satisfies the 2- pebbling property
if it is possible to move two pebbes to any specified target vertex whenever p
and q satisfy the inequality p + q > 2f(G). Further a graph G satisfies the
2t-pebbling property if 2t pebbles can be moved to a specified vertex whenever p
and q satisfy the inequality p + q > 2ft(G). Lourdusamy et al. [4], [5], [6], [7]
have proved that the star graph, the complete graph, the complete multi-partite
graph, the n-cube, the cycle and the wheel graph have the 2t-pebbling property.

The Cartesian product of graphs G and H is denoted by G×H. The following
well-known conjecture first appeared in [1].
Conjecture 1.1. (Graham [1]) For any connected graphs G and H, f(G×H) ≤
f(G).f(H).

Further Lourdusamy [4] extended this conjecture as follows.
Conjecture 1.2. (Lourdusamy [4]) For any connected graphs G and H, ft(G×
H) ≤ f(G).ft(H).

Lourdusamy et al.[4], [5], [6], [7] proved that if G is a fan graph, a wheel
graph, a complete graph, a star graph, a path, a complete multi-partite graph
and H has the 2t-pebbling property, then Conjecture 1.2 holds.

The purpose of this paper is to find the t-pebbling number for the middle
graph of a complete binary tree M(Bh) and prove that the middle graph of a
complete binary tree M(Bh) satisfies the 2t-pebbling property. In other words,
the Conjecture 1.2 is true when G is a fan graph, a wheel graph, a complete
graph, a star graph, a path, a complete multi-partite graph and H is the middle
graph of a complete binary tree.

We now introduce some definitions and notations which will be useful for the
subsequent sections. For graph theoretic terminologies we refer to [2].
Definition 1.3. A complete binary tree, denoted by Bh is a binary tree of height
h, with 2k vertices at a distance k from the root. Each vertex of Bh has two
children, except for the set of 2h vertices that are distance h away from the root,
each of which has no children.
Definition 1.4. The middle graph M(G) of a graph G is the graph obtained
from G by inserting a new vertex into every edge of G and by joining the edges
of those pair of these new vertices which lie on the adjacent edges of G.

Let H ⊆ V (G). Let < H > be the induced subgraph of the graph G, induced
by the vertices in the set H. Label the root vertex of the complete binary tree
of height h by v0. For each level i, 1 ≤ i ≤ h label the vertices of the graph from
the left to the right by v2i−1, v2i , v2i+1, . . . , v2i+1−2.

Now we create the middle graph of the complete binary tree of height h. First
the edges v0v1, v0v2, v1v3, v1v4, . . . , v2h−2v2h+1−2 are subdivided by introducing
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the new vertices v01, v02, v11, v12, . . . , v2h−22 respectively. Then joining the edges
of those pairs of these new vertices which lie on the adjacent edges of the graph.
Let us denote the middle graph of a complete binary tree of height h by M(Bh).
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Figure 1.1.
The reader can easily view that M(Bh) has 2h−i copies of M(Bi), where

1 ≤ i ≤ h− 1. In this paper, M(Bi)
(j) j = 1, 2, . . . represents the jth occurance

of M(Bi) counted from left. For instance in Figure 1.1 we have two M(B1).
With regard to the pebbling number of middle graphs, we find the following

theorems in [3] and [9].

Theorem 1.5. ([3]) Let Pn be the path with n, (n ≥ 2) vertices. Then f(M(Pn)) =
2n + n− 2.

Theorem 1.6. ([3]) Let Kn be the Complete graph with n, (n ≥ 2) vertices.
Then f(M(Kn)) =

n(n+1)
2 .

Theorem 1.7. ([3]) Let K1,n be the star graph with n + 1, (n ≥ 2) vertices.
Then f(M(K1,n)) = 3n+ 3.

Theorem 1.8. ([9]) Let Cn be the cycle with n vertices. Then

f(M(Cn)) =


2n+1 + 2n− 2, n ≥ 2, n is even⌊
2n+3

3

⌋
+ 2n, n is odd

Theorem 1.9. ([9]) Let Fn be the fan graph with n, (n ≥ 4) vertices. Then
f(M(Fn)) = 3n− 1.

In Section 2, we compute the t-pebbling number for M(Bh). In Section 3, we
prove that M(Bh) satisfies the 2t-pebbling property.

2. The t-pebbling number for M(Bh)

Remark 2.1. A distribution of pebbles on the vertices of the graph G is a
function p : V (G) → N ∪ {0}. Let p(v) denote the number of pebbles on
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the vertex v and p(A) denote the number of pebbles on the vertices of the set
A ⊆ V (G). Let v be a target vertex in the graph G. If p(v) = 1 or p(u) ≥ 2,
where uv ∈ E(G), then we can move a pebble to v easily. So we always assume
that p(v) = 0 and p(u) ≤ 1 for all uv ∈ E(G), when v is the target vertex.

Lemma 2.1. Suppose 4m + 1 pebbles are distributed on the subgraph H =<
v0, v01, v02, v2 > of the graph M(B1), then m pebbles can be moved to v01.

Proof. The proof is by induction on m. Let D be any distribution of 5 pebbles
on the vertices of H. By Remark 2.1, p(v0) ≤ 1 and p(v02) ≤ 1. Then we have
at least four pebbles on the path P : v2, v02, v01 and hence we can move a pebble
to v01.

Assume the lemma is true for 2 ≤ m′ < m. Now consider any distribution
of 4m + 1 pebbles on the vertices of H. First assume that p(v01) = x, where
1 ≤ x ≤ m−1. The remaining number of pebbles on the vertices of < H−{v01} >
is at least 4m+1−x ≥ 4(m−x)+1. Thus we can move m−x additional pebbles
to the vertex v01. Assume p(v01) = 0. Clearly we can move one pebble to v01 at
a cost of at most four pebbles and hence we have at least 4(m−1)+1 remaining
pebbles on the vertices of H. So, we can move m− 1 additional pebbles to the
vertex v01 by induction. □
Lemma 2.2. Suppose 8m + 5 pebbles are distributed on the subgraph H =<
M(B1)

(2) ∪{v02, v01, v0} > of the graph M(B2), then m pebbles can be moved to
v01.

Proof. The proof is by induction on m. Let D be any distribution of 13 pebbles
on the vertices of H. Clearly p(v01) = 0 and p(v0) ≤ 1 by Remark 2.1. Using
12 pebbles on the vertices of < H − {v0} > we can move a pebble to v01, since
< H − {v0} > is isomorphic to M(K1,3) and f(M(K1,3)) = 12.

Assume the lemma is true for 2 ≤ m′ < m. Now consider any distribution
of 8m + 5 pebbles on the vertices of H. First assume that p(v01) = x, where
1 ≤ x ≤ m−1. The remaining number of pebbles on the vertices of < H−{v01} >
is at least 8m + 5 − x ≥ 8(m− x) + 5. Thus we can move m − x additional
pebbles to the vertex v01. Assume p(v01) = 0. Clearly, we can move one pebble
to v01 at a cost of at most eight pebbles hence we have at least 8(m − 1) + 5
remaining pebbles on the vertices of H. So, we can move m − 1 additional
pebbles to the vertex v01 by induction. □
Lemma 2.3. Suppose 16m + 17 pebbles are distributed on the subgraph H =<
M(B2)

(2) ∪{v02, v01, v0} > of the graph M(B3), then m pebbles can be moved to
v01.

Proof. The proof is by induction on m. Let D be any distribution of 33 pebbles
on the vertices of H. Clearly p(v01) = 0, p(v0) ≤ 1 and p(v02) ≤ 1 by Remark
2.1. Assume p(v02) = 1. Then C1 ∪ {v2} or C2 ∪ {v2} has at least 16 pebbles,
where C1 =< {v21}∪ M(B1)

(3)
> and C2 =< {v22}∪ M(B1)

(4)
>. Thus we can

move a pebble to v02 by Lemma 2.2 and hence we reach the target. Therefore
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assume that p(v02) = 0. If p(v2) ≥ 4, then we can move a pebble to the target
easily. If p(v2) =2 or 3, we can move a pebble to v02. Then either C1 or C2

has at least 15 pebbles. Thus we can move another pebble to v02 by Lemma
2.2 and hence we reach the target. Assume p(v2) ≤ 1. Then either C1 or C2

has at least 16 pebbles. Without loss of generality, assume that p(C1) ≥ 16.
If p(C1) ≥ 21, then we can move two pebbles to v02 by Lemma 2.2. Therefore
16 ≤ p(C1) ≤ 20. Suppose p(v2) = 1. If p(C1) = 20, then p(C1 ∪ {v2}) = 21.
Now we can move two pebbles to v02 by Lemma 2.2. Therefore assume that
p(C1) ≤ 19. Then there are at least 12 pebbles distributed on C2. If p(C2) = 12,
then p(C2 ∪ {v2}) = 13. Otherwise p(C2) ≥ 13. Thus in either cases, we can
move one pebble from C1 and another pebble from C2 to v02 by Lemma 2.2.
Now assume p(v2) = 0. Then one pebble can be moved to v02 from C1 and also
C2 contains at least 12 pebbles. Since p(v2) = 0, using 12 pebbles we can move
another pebble to v02 from C2 and hence we are done.

Assume the lemma is true for 2 ≤ m′ < m. Now consider any distribution
of 16m + 17 pebbles. First assume that p(v01) = x, where 1 ≤ x ≤ m − 1.
The remaining number of pebbles on the vertices of < H − {v01} > is at least
16m + 17 − x ≥ 16(m − x) + 17. Thus we can move m − x additional pebbles
to v01. Assume p(v01) = 0. Clearly, we can move one pebble to v01 at a cost of
at most sixteen pebbles and hence we have at least 16(m − 1) + 17 remaining
pebbles on the vertices of H. So, we can move m− 1 additional pebbles to the
vertex v01 by induction. □

Lemma 2.4. Suppose m2h+1+2h−1+
∑h−2

i=0 2i(2h−i−1) pebbles are distributed
on the subgraph H =< M(Bh−1)

(2) ∪ {v0, v01, v02} > of the graph M(Bh), then
m pebbles can be moved to v01.

Proof. The proof is by induction on h, where the cases h = 1, 2, and 3 follow
from Lemma 2.1, Lemma 2.2 and Lemma 2.3 respectively. Assume the lemma
for 4 ≤ h′ < h. We now prove the lemma for height h. Let D be any distribution
of m2h+1 + 2h−1+

∑h−2
i=0 2i(2h−i − 1) pebbles on H. We prove that m pebbles

can be moved to v01.
We prove this by induction on m. For m = 1, 2h+1+2h−1+

∑h−2
i=0 2i(2h−i−1)

pebbles are distributed on the vertices of H. Clearly p(v01) = 0, p(v0) ≤ 1
and p(v02) ≤ 1 by Remark 2.1. Assume p(v02) = 1. Then either C1 ∪ {v2}
or C2 ∪ {v2} has at least 2h + 2h−2 +

∑h−3
i=0 2i(2h−i−1 − 1) pebbles, where

C1 =< {v21} ∪ M(Bh−2)
(3) > and C2 =< {v22} ∪ M(Bh−2)

(4) >. Then we
can move a pebble to v02 by induction and hence we reach the target. There-
fore assume that p(v02) = 0. If p(v2) ≥ 4, then we can move a pebble to the
target easily. If p(v2) = 2 or 3, then we can move a pebble to v02. Also ei-
ther C1 or C2 has at least 2h + 2h−2 +

∑h−3
i=0 2i(2h−i−1 − 1) pebbles. Then we

can move a pebble to v02 by induction and hence we are done. Assume p(v2) ≤ 1.

Case 1 : Let p(v2) = 1.
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Then p(Cj) ≥ 2h + 2h−2 +
∑h−3

i=0 2i(2h−i−1 − 1) for some j = 1, 2. Without
loss of generality, assume that p(C1) ≥ 2h + 2h−2 +

∑h−3
i=0 2i(2h−i−1 − 1).

Suppose p(C1) ≥ 2.2h + 2h−2 +
∑h−3

i=0 2i(2h−i−1 − 1), then we can move two
pebbles to v02 and hence we are done. If p(C1) = 2.2h+2h−2+

∑h−3
i=0 2i(2h−i−1−

1) − 1, then we can reach the target easily. Therefore we assume that p(C1) ≤
2.2h+2h−2+

∑h−3
i=0 2i(2h−i−1−1)−2. Then p(C2) ≥ 2h+2h−2+

∑h−3
i=0 2i(2h−i−1−

1) − 1. If p(C2) = 2h + 2h−2 +
∑h−3

i=0 2i(2h−i−1 − 1) − 1, then p(C2 ∪ {v2}) =
2h + 2h−2 +

∑h−3
i=0 2i(2h−i−1 − 1) and hence we are done. Otherwise p(C2) ≥

2h + 2h−2 +
∑h−3

i=0 2i(2h−i−1 − 1). Then we can move one pebble from C2 and
another from C1 and hence we are done.

Case 2 : Let p(v2) = 0.
Then p(Cj) ≥ 2h+2h−2+

∑h−3
i=0 2i(2h−i−1−1) for some j = 1, 2. Without loss

of generality, assume that p(C1) ≥ 2h + 2h−2 +
∑h−3

i=0 2i(2h−i−1 − 1). Suppose
p(C1) ≥ 2.2h + 2h−2+

∑h−3
i=0 2i(2h−i−1 − 1) , then we can move two pebbles to

v02 and hence we are done. If p(C1) ≤ 2.2h + 2h−2+
∑h−3

i=0 2i(2h−i−1 − 1) − 1,
then p(C2) ≥ 2h + 2h−2+

∑h−3
i=0 2i(2h−i−1 − 1) − 1. Since p(v2) = 0, we can

move a pebble to v02 using 2h + 2h−2+
∑h−3

i=0 2i(2h−i−1 − 1)− 1 pebbles on C2

and another pebble to v02 from C1. Hence we can move a pebble to v01.
Assume the lemma is true for 2 ≤ m′ < m. Now consider any distribution of

m2h+1 + 2h−1+
∑h−2

i=0 2i(2h−i − 1) pebbles on the vertices of H. First assume
that p(v01) = x, where 1 ≤ x ≤ m− 1. The remaining number of pebbles on the
vertices of < G− {v01} > is at least

m2h+1+2h−1+
∑h−2

i=0 2i(2h−i−1)−x ≥ (m−x)2h+1+2h−1+
∑h−2

i=0 2i(2h−i−1).

Thus we can move m−x additional pebbles to the vertex v01. Assume p(v01) = 0.
Clearly, we can move one pebble to v01 at a cost of at most 2h+1 pebbles and
hence we have

m2h+1+2h−1+
∑h−2

i=0 2i(2h−i−1)−2h+1 ≥ (m−1)2h+1+2h−1+
∑h−2

i=0 2i(2h−i−1)

pebbles on the vertices of G. So, we can move m − 1 additional pebbles to the
vertex v01 by induction. □

In [3], we find that f(M(P3)) = 9. Since M(B1) is isomorphic to M(P3), we
conclude that f(M(B1)) = 9.

Theorem 2.5. [3] For the middle graph of a complete binary tree of height one,
f(M(B1)) = 9.

Theorem 2.6. For the middle graph of a complete binary tree of height two,
f(M(B2)) = 41.
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Proof. Placing 31 pebbles on v3, 3 pebbles each on v4 and v5 and one pebble
each on v0, v1, v2 we cannot reach v6. Thus f(M(B2)) ≥ 41.

Now we prove that f(M(B2)) ≤ 41. Let D be any distribution of 41 pebbles
on the vertices of M(B2).

Case 1: Let v3 be the target vertex.
Clearly p(v3) = 0 and p(v11) ≤ 1 by Remark 2.1. If p(M(B1)

(1)
) ≥ 9 then

we are done. If 5 ≤ p(M(B1)
(1)

) ≤ 8 then we can move one pebble to v11
by Lemma 2.1. Also the minimum number of pebbles distributed on the ver-
tices of < M(B1)

(2) ∪ {v0, v01, v02} > is 33. By using Lemma 2.2, we can
move at least three pebbles to v01 and hence we reach the target. Suppose
0 ≤ p(M(B1)

(1)
) ≤ 4. Then the minimum number of pebbles distributed on the

vertices of < M(B1)
(2) ∪ {v0, v01, v02} > is 37. By using Lemma 2.2, we can

move four pebbles to v01 and hence we are done.

Case 2 : Let v be the target vertex other than the pendant vertices.
Without loss of generality, assume that v ∈< M(B1)

(1) ∪ {v0, v01} >. Since <

M(B1)
(1)∪{v0, v01} > is isomorphic to M(K1,3), we are done if p(< M(B1)

(1)∪
{v0, v01} >) ≥ 12. Otherwise there are at least 30 pebbles distributed on the
vertices of < M(B1)

(2) ∪ {v02} >. By using Lemma 2.2, we can reach the
target. □

Theorem 2.7. For the middle graph of a complete binary tree of height three,
f(M(B3)) = 161.

Proof. Placing 127 pebbles on v7, seven pebbles each on v9 and v11, three pebbles
each on v8, v10, v12 and v13 and one pebble each on v0, v1, v2, v3, v4, v5 and v6,
we cannot move a pebble to v14. Thus f(M(B3)) ≥ 161.

Now we prove that f(M(B3)) ≤ 161. Let D be any distribution of 161 peb-
bles on the vertices of M(B3).

Case 1 : Let v7 be the target vertex.
Clearly p(v7) = 0 and p(v31) ≤ 1 by Remark 2.1. If p(M(B1)

(1)
) ≥ 9 or

p(M(B2)
(1)

) ≥ 41, then we are done. Therefore assume p(M(B1)
(1)

) ≤ 8 and
p(M(B2)

(1)
) ≤ 40. Then the minimum number of pebbles distributed on the

vertices of < M(B2)
(2) ∪ {v0, v01, v02} > is 121. Thus we can move at least six

pebbles to v01 by Lemma 2.2. If 13 ≤ p(< M(B1)
(1) ∪ {v1, v11, v12} >) ≤ 40,

then we can move at least one pebble to v11 and hence we reach the target. So
assume p(< M(B1)

(1) ∪ {v1, v11, v12} >) ≤ 12. Suppose 5 ≤ p(M(B1)
(1)

) ≤ 8.
Then by Lemma 2.1 we can move at least one pebble to v31 and hence we are
done. Therefore assume p(M(B1)

(1)
) ≤ 4. Now the minimum number of pebbles

distributed on the vertices of < M(B2)
(2) ∪ {v0, v01, v02} > is 145. Thus we can
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move eight pebbles to v01 by Lemma 2.3 and hence we are done.

Case 2 : Let v0 be the target vertex.
Clearly p(v0) = 0, p(v01) ≤ 1 and p(v02) ≤ 1 by Remark 2.1. Then p(<

M(B2)
(i) ∪ {v0, v01, v02} >) ≥ 80 for some j = 1, 2. By using Lemma 2.3,

we can easily reach the target.

Case 3 : Let v be the target vertex, where v ∈ {v01, v02}.
Without loss of generality, let v01 be the target vertex. Clearly p(v01) =0.
If p(< M(B2)

(2) ∪ {v0, v01, v02} >) ≥ 33, then by Lemma 2.3 we are done.
Suppose p(< M(B2)

(2) ∪ {v0, v01, v02} >) ≤ 32. Then the minimum number
of pebbles distributed on the vertices of M(B2)

(1) is 129. Hence any one of
< M(B1)

(i) ∪ {v1i, v1, v01} >, where i = 1, 2 contains at least 64 pebbles and
thus we reach the target by Lemma 2.2.

Case 4 : Let v be the target vertex, other than v01, v02, v0 and the pendant
vertices.
Without loss of generality, assume that v ∈ M(B2)

(1). If p(M(B2)
(1)

) ≥ 41,
then we are done. Therefore assume p(M(B2)

(1)
) ≤ 40. Then the minimum

number of pebbles distributed on the vertices of < M(B2)
(2) ∪ {v0, v01, v02} >

is 121. By using Lemma 2.3, we can move at least six pebbles to v01 and hence
we are done. □

Theorem 2.8. For the middle graph of a complete binary tree of height h,
f(M(Bh)) = 2h(2h+1 + 1)− 1 +

∑h−2
i=0 2i+1(2h−i − 1).

Proof. The proof is by induction on h, where the cases h = 1, 2, and 3 follow
from Theorem 2.5, Theorem 2.6 and Theorem 2.7 respectively. Assume the the-
orem is true for 4 ≤ h′ < h. Let D be any distribution of 2h(2h+1 + 1) − 1 +∑h−2

i=0 2i+1(2h−i − 1) pebbles.

Case 1: Let v2h−1 be the target vertex.

Clearly, p(v2h−1) = 0 and p(v(2h−1−1)1) ≤ 1 by Remark 2.1. If p(M(Bh−1)
(1))

≥ f(M(Bh−1)), then we are done. Assume p(M(Bh−1)
(1)) ≤ f(M(Bh−1))− 1.

If p(< M(Bh−1)
(2) ∪ {v0, v01, v02} >) ≥ (2h)2h+1 + 2h−1 +

∑h−2
i=0 2i(2h−i − 1),

then by Lemma 2.4, we can move 2h pebbles to v01 and hence we are done.
Therefore assume

p(< M(Bh−1)
(2)∪{v0, v01, v02} >) ≤(2h)2h+1+2h−1+

∑h−2
i=0 2i(2h−i−1)−1.
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If p(< M(Bh−1)
(2)∪{v0, v01, v02} >)≤ f(M(Bh))−f(M(Bh−1)), then M(Bh−1)

(1)

contains at least f(M(Bh−1)) pebbles and hence we are done. So, assume

p(< M(Bh−1)
(2) ∪ {v0, v01, v02} >) ≥ f(M(Bh))− f(M(Bh−1)) + 1.

Since
f(M(Bh))−f(M(Bh−1))+1 ≥ (2h−2h−2)2h+1+2h−1+

∑h−2
i=0 2i (2h−i−1),

by Lemma 2.4 we can move at least 2h − 2h−2 pebbles to v01.
Let x be the number of pebbles on v01 after the sequence of pebbling moves

on < M(Bh−1)
(2) ∪ {v0, v02} >. Clearly, 2h − 2h−2 ≤ x ≤ 2h − 1. Suppose

v(2h−1−1)1 is already occupied, then we are done. So, assume p(v(2h−1−1)1) = 0.
Suppose any one of < M(Bi−1)

(2) ∪ {v2h−i−1, v(2h−i−1)1, v(2h−i−1)2 >, where
i = 2, 3, . . . , h − 1 contains at least mi2

i+1 + 2i−1 +
∑i−2

j=0 2
j(2i−j − 1) peb-

bles, where mi = 2i −
⌊

x
2h−i

⌋
, then by Lemma 2.4 we can move mi pebbles to

v(2h−i−1)1 and hence we are done. Otherwise,

p(< M(Bi−1)
(2) ∪ {v2h−i−1, v(2h−i−1)1, v(2h−i−1)2 >) ≤

mi2
i+1+2i−1+

∑i−2
j=0 2

j(2i−j − 1)−1

for every i = 2, 3, . . . , h− 1. Now the minimum number of pebbbles distributed
on the vertices of M(B1)

(1) is

f(M(Bh)) − {[(x + 1)2h+1 + 2h−1 +
∑h−2

i=0 2i(2h−i − 1) − 1] +
∑h−1

i=2 [mi2
i+1

+2i−1 +
∑i−2

j=0 2
j(2i−j − 1)− 1]}

= 22h+1− (x+1)2h+1+2h+2h−h−2+h−1−m22
3−m32

4− . . .−mh−12
h

≥ 5, since h ≥ 4.

Thus we can move a pebble to v(2h−1−1)1 by Lemma 2.1 and hence we are done.

Case 2: Let v0 be the target vertex.

Clearly p(v0) = 0 and any of < M(Bh−1)
(i) ∪ {v01, v02} >, where i = 1, 2 con-

tains at least 2.2h+1 + 2h−1 +
∑h−2

i=0 2i(2h−i − 1) pebbles. Then by Lemma 2.4,
we are done.

Case 3: Let v0i, i = 1, 2 be the target vertex.

Without loss of generality, assume that v01 be the target vertex. Clearly p(v01) =
0. Suppose
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p(< M(Bh−1)
(2) ∪ {v0, v01, v02} >) ≥ 2h + 2h−2 +

∑h−3
i=0 2i(2h−i−1 − 1),

then by Lemma 2.4 we are done. Assume

p(< M(Bh−1)
(2) ∪ {v0, v01, v02} >) ≤ 2h + 2h−2 +

∑h−3
i=0 2i(2h−i−1 − 1)− 1.

Then there exists an i such that

p(< M(Bh−2)
(i) ∪ {v1, v1i, v01} >) ≥ 2h−1 + 2h−3 +

∑h−4
i=0 2i(2h−i−2 − 1),

where i = 1, 2. Thus by Lemma 2.4 we can move a pebble to the target.

Case 4: Let v be the target vertex other than v0, v01, v02 and the pendant
vertices.

Without loss of generality, assume that v ∈ M(Bh−1)
(1). Suppose p(M(Bh−1)

(1))
≥ f(M(Bh−1)), then we are done. Therefore assume that p(M(Bh−1)

(1)) ≤
f(M(Bh−1))−1. Then there are at least f(M(Bh))−(f(M(Bh−1))−1) pebbles
on < M(Bh−1)

(2) ∪ {v0, v01, v02} >. Since

f(M(Bh))− (f(M(Bh−1)−1) ≥ (2h−2h−2)2h+1+2h−1+
∑h−2

i=0 2i(2h−i−1),

we can move at least 2h − 2h−2 pebbles to v01. Since 2h − 2h−2 ≥ 2h−1 and
d(v01, v) ≤ h− 1, we are done. □

Theorem 2.9. For the middle graph of a complete binary tree of height h,
ft(M(Bh)) = 2h(t2h+1 + 1)− 1 +

∑h−2
i=0 2

i+1(2h−i − 1).

Proof. The proof is by induction on t. For t = 1, the theorem follows from
Theorem 2.8. Assume the theorem is true for 2 ≤ t′ < t. Let D be any
distribution of 2h(t2h+1 + 1)− 1 +

∑h−2
i=0 2

i+1(2h−i − 1) pebbles on the vertices
of the graph M(Bh).

Let v be any target vertex. Suppose p(v) = 0. We can move a pebble to v at a
cost of at most 22h+1 pebbles, since M(Bh) contains at least 22h+2 pebbles and
diameter of M(Bh) is 2h+1. Now the minimum number of pebbles distributed
on the vertices of M(Bh) is

2h(t2h+1 + 1)− 1 +
∑h−2

i=0 2
i+1(2h−i − 1)− 22h+1

= 2h((t− 1)2h+1 + 1)− 1 +
∑h−2

i=0 2
i+1(2h−i − 1).

Thus we can move t−1 additional pebbles to v by induction. Suppose p(v) = x,
where 1 ≤ x ≤ t− 1. Then the minimum number of pebbles distributed on the
vertices of < M(Bh)− {v} > is



Pebbling on the middle graph of a complete binary tree 173

2h(t2h+1 + 1)− 1 +
∑h−2

i=0 2
i+1(2h−i − 1)− x

≥ 2h((t− x)2h+1 + 1)− 1 +
∑h−2

i=0 2
i+1(2h−i − 1).

Thus we can move t−x additional pebbles to v by induction. Thus ft(M(Bh)) =

2h(t2h+1 + 1)− 1 +
∑h−2

i=0 2
i+1(2h−i − 1). □

3. The 2t-pebbling property

In this section, we prove that the middle graph of a complete binary tree
M(Bh) satisfies the 2t-pebbling property.

Remark 3.1. Consider the graph G with n vertices and 2f(G)− q+ 1 pebbles
on it and we choose a target vertex v from G. If p(v) = 1, then the number of
pebbles remaining in G is 2f(G) − q ≥ f(G), since f(G) ≥ n and q ≤ n, and
hence we can move the second pebble to v. Let us assume that p(v) = 0. If
p(u) ≥ 2 where uv ∈ E(G), we move a pebble to v from u. Then the graph G
has at least 2f(G)− q+1− 2 pebbles, since f(G) ≥ n and q ≤ n− 1, and hence
we can move the second pebble to v. So, we always assume that p(v) = 0 and
p(u) ≤ 1 for all uv ∈ E(G), when v is the target vertex.

Theorem 3.1. The graph M(B2) satisfies the 2-pebbling property.

Proof. The graph M(B2) has at least 2f(M(B2))− q+1 ≥ 83− q pebbles on it.

Case 1 : Let q ≤ 10.

Let v be any target vertex. Clearly p(v) = 0 and p(u) ≤ 1 for all uv ∈ E(M(B2))
by Remark 3.1. We can move one pebble to v at a cost of at most 25 pebbles,
since 83 − q ≥ 41 and d(v, vi) ≤ 5, for all vi ∈ M(B2). Then the minimum
number of pebbles distributed on the vertices of M(B2) is 83 − 10 − 25 = 41.
Hence we can move an additional pebble to v by Theorem 2.9.

Case 2 : Let q = 11.

Subcase 2.1 : Let v3 be the target vertex.

Clearly p(v3) = 0 and p(v11) ≤ 1 by Remark 3.1. Let p(v11) = 1. Suppose
p(v12) ≥ 2 or p(v01) ≥ 2 or p(v1) ≥ 2 then we can move a pebble to v3. Then
the graph M(B2) has at least 83−q−3 = 69 ≥ 41 pebbles and hence by Theorem
2.9, we are done. Therefore assume p(v4) ≤ 4. Clearly, at least 65 pebbles are
distributed on < M(B1)

(2)∪{v0, v02} > and so by Lemma 2.2, we can move two
pebbles to v3.

Let p(v11) = 0. If p(M(B1)
(1)

) ≥ 9, then one pebble can be moved to the
target. Then the graph M(B2) has at least 83 − q − 9 = 63 ≥ 41 pebbles
and hence we are done by Theorem 2.9. Suppose 4 ≤ p(M(B1)

(1)
) ≤ 8. Since
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p(v11) = 0 and q = 11, we can move a pebble to v11. Also the minimum num-
ber of pebbles distributed on the vertices of < M(B1)

(2) ∪ {v0, v01, v02} > is
83 − q − 8 = 64 ≥ 8(7) + 5. Then by Lemma 2.2, we can move seven peb-
bles to v01 and hence we are done. Assume p(M(B1)

(1)
) ≤ 3. Then the graph

< M(B1)
(2)∪{v0, v01, v02} > contains at least 83−q−3 = 69 ≥ 8(8)+5 pebbles.

Thus we can move eight pebbles to v01 by Lemma 2.2 and hence we are done.

Subcase 2.2 : Let v0 be the target vertex.

If p(< M(B1)
(1) ∪ {v0, v01} >) ≥ 12, then we can move a pebble to v0, since

< M(B1)
(1) ∪ {v0, v01} > is isomorphic to M(K1,3) and f(M(K1,3)) = 12.

Then the minimum number of pebbles distributed on the vertices of M(B2)
is 83 − q − 12 ≥ 41. Hence we can move another pebble to v0. Assume
p(< M(B1)

(1) ∪ {v0, v01} >) ≤ 11. Then < M(B1)
(2) ∪ {v0, v02} > has at

least 83− q− 11 = 61 ≥ 8(7)+5 pebbles and hence by Lemma 2.2, we are done.

Subcase 2.3 : Let v be any target vertex other than the root vertex and the
pendant vertices.

Without loss of generality, assume that v ∈ M(B1)
(1). Suppose there exists a

pendant vertex in M(B1)
(1) with at least four pebbles, then we can move one

pebble to v. Then the graph M(B2) has at least 41 pebbles and we can move
an additional pebble to v by Theorem 2.9. Suppose p(v3) + p(v4) ≥ 5, then one
pebble can be moved to v, since q = 11. Also the graph M(B2) has at least 41
pebbles and hence we are done. So, assume p(v3) + p(v4) ≤ 4. Now the mini-
mum number of pebbles distributed on the vertices of < M(B1)

(2) ∪ v{02} > is
83− q − 4− 5 = 63 ≥ 8(7) + 5, since q = 11. Thus by Lemma 2.2, we can move
seven pebbles to v01 and hence we are done.

Case 3 : Let q = 12.

Let v be any target vertex. Clearly p(u) ≥ 2 for some u ∈ M(B2). We can
easily move a pebble to v at a cost of at most six pebbles, since the diameter of
M(B2) is five. Then the minimum number of pebbles distributed on the vertices
of M(B2) is 83 − q − 6 ≥ 41. Hence we can move an additional pebble to v by
Theorem 2.9. □

Theorem 3.2. The graph M(Bh), h ≥ 3 satisfies the 2-pebbling property.

Proof. Let D be any distribution with at least 2(f(M(Bh)))− q + 1 pebbles on
M(Bh). Since q ≤ 2h+2 − 3, it is easy to see that,

2(f(M(Bh)))− q + 1 = 22h+2 + 2h+1 − 2 + 2
∑h−2

i=0 2i+1(2h−i − 1)− 2h+2 + 4
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= f2(M(Bh)) + k,

where k =
∑h−2

i=0 2i+1(2h−i − 1) + 3 − 3(2h). Since k ≥ 0, we conclude that
2(f(M(Bh)))− q + 1 exceeds f2(M(Bh)). And hence we can move two pebbles
to any target vertex by Theorem 2.9. □

Theorem 3.3. The graph M(Bh), h ≤ 2 satisfies the 2t-pebbling property.

Proof. The proof is by induction on t. For t = 1, it follows from Theorem 3.2.
Assume the theorem is true for 2 ≤ t′ < t. Let D be any distribution with at
least 2(ft(M(Bh))) − q + 1 pebbles on M(Bh). Let v be any target vertex and
suppose p(v) = 0. We can easily move two pebbles to v at a cost of at most 22h+2

pebbles, since 2(ft(M(Bh))) − q + 1 ≥ f2(M(Bh)) and the diameter of M(Bh)
is 2h + 1. Then the minimum number of pebbles distributed on the vertices of
M(Bh) is 2(ft(M(Bh)))− q + 1− 22h+2. Since

2(ft(M(Bh)))− q + 1− 22h+2 = 2(ft−1(M(Bh)))− q + 1,

we can move 2(t − 1) additional pebbles to v by induction. Suppose p(v) = x,
where 1 ≤ x ≤ 2t − 1. The remaining number of pebbles on the vertices of
< M(Bh) − {v} > is 2(ft(M(Bh))) − q + 1 − x. Since q ≤ 2h+2 − 3, it follows
that,

2(ft(M(Bh)))− q + 1− x ≥ f(2t−x)(M(Bh)).

Hence we can move 2t− x additional pebbles to v by Theorem 2.9. □

Theorem 3.4. The graph M(Bh), h ≥ 3 satisfies the 2t-pebbling property.

Proof. Let D be any distribution with at least 2(ft(M(Bh)))− q+1 pebbles on
M(Bh). Since q ≤ 2h+2 − 3, it is easy to see that,

2(ft(M(Bh)))− q+1 = t22h+2 +2h+1 − 2+2
∑h−2

i=0 2i+1(2h−i − 1)− 2h+2 +4

= f2t(M(Bh)) + k,

where k =
∑h−2

i=0 2i+1(2h−i − 1) + 3 − 3(2h). Since k ≥ 0, we conclude that
2(ft(M(Bh)))− q + 1 exceeds f2t(M(Bh)) . And hence we can move 2t pebbles
to any target vertex by Theorem 2.9. □

4. The t-pebbling Conjecture

Lourdusamy et al. [4], [5], [6], [7] proved that if G is a fan graph, a wheel
graph, a complete graph, a complete multipartite graph, a path and H has the
2t−pebbling property then Conjencture 1.2 holds.
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Since M(Bh) has the 2t− pebbling property we conclude that conjecture
1.2 holds if G is a fan graph, a wheel graph, a complete graph, a complete
multipartite graph, a path and H is the middle graph of a complete binary tree.

Conjecture 4.1. ft(G×H) ≤ f(G).ft(H), where G and H are middle graphs
of a complete binary tree.
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