# Graph Equations Involving Tensor Product of Graphs 

H. P. Patil* and V. Raja<br>Department of Mathematics, Pondicherry University, Kalapet Campus, Puducherry 605 014, India<br>e-mail : hpppondy@gmail.com and vraja.math@gmail.com

Abstract. In this paper, we solve the following four graph equations $L^{k}(G)=H \oplus$ $J ; M(G)=H \oplus J ; \overline{L^{k}(G)}=H \oplus J$ and $\overline{M(G)}=H \oplus J$, where $J$ is $n K_{2}$ for $n \geq 1$. Here, the equality symbol $=$ means the isomorphism between the corresponding graphs. In particular, we shall obtain all pairs of graphs $(G, H)$, which satisfy the above mentioned equations, upto isomorphism.

## 1. Introduction

We shall consider only finite, simple and undirected graphs. We follow the terminology of Harary [5]. For a graph $G$, let $V(G)$ and $E(G)$ denote the vertex set and edge set of $G$, respectively. As in [5], let $P_{n}, C_{n}$ and $K_{n}$ denote a path, cycle and complete graph, on $n$ vertices, respectively. We call a graph with just one vertex is trivial and all other graphs are nontrivial. The degree of a vertex $v$ in a graph $G$, is the number of edges incident to $v$ and is denoted by $\operatorname{deg}(v)$. The maximum degree of a graph $G$, is the maximum degree among the vertices of $G$ and is denoted by $\Delta(G)$. Let $G$ be a graph. A subgraph $H$ of $G$ is an induced subgraph of $G$ if whenever $u$ and $v$ are vertices of $H$ and $u v$ is an edge of $G$, then $u v$ is also an edge of $H$. If $S$ is a nonempty set of vertices of $G$, then the subgraph of $G$ induced by $S$, denoted by $\langle S\rangle$, is the induced subgraph with vertex set $S$. If $X$ is a nonempty set of edges of $G$, then the subgraph of $G$ induced by $X$, denoted by $\langle X\rangle$, is the induced subgraph of $G$, whose vertex set is the set of all vertices of edges in $X$ and whose edge set is $X$. Throughout this paper, the equality sign $=$ means the isomorphism between the corresponding graphs. A graph $G$ is connected if there is

[^0]at least one path between every pair of its vertices ; otherwise, $G$ is disconnected. A graph which is both connected and nontrivial is a nontrivial connected graph. For a connected graph $G, n G ; n \geq 1$, is the graph with $n$ components, each being isomorphic to $G$. The complement $\bar{G}$ of a graph $G$, is the graph whose vertex set is $V(G)$ and two vertices are adjacent in $\bar{G}$ if and only if they are not adjacent in $G$. In any graph $G$, the set of vertices adjacent to a vertex $u$ are the neighbours of $u$ and the neighbourhood of $u$ is the set $N(u)=\{v \in V(G): u v \in E(G)\}$. The closed neighbourhood of $u$ is $N[u]=N(u) \cup\{u\}$. A graph $G$ is bipartite graph if $V(G)$ can be partitioned into two subsets $X$ and $Y$, such that every edge of $G$ has one end in $X$ and the other end in $Y$. Further, if each vertex of $X$ is joined to each vertex of $Y$, then such a graph $G$ is a complete bipartite graph and is denoted by $K_{m, n}$, where $m=|X|$ and $n=|Y|$. A vertex of a connected graph is a cutvertex if its removal produces a disconnected graph. A nontrivial connected graph with no cutvertices is a block.

The tensor product of two graphs $G_{1}$ and $G_{2}$ (see, [3], [11]), is the graph denoted by $G_{1} \oplus G_{2}$, with vertex set $V\left(G_{1} \oplus G_{2}\right)=V\left(G_{1}\right) \times V\left(G_{2}\right)$ and any two of its vertices $\left(u_{1}, v_{1}\right)$ and $\left(u_{2}, v_{2}\right)$ are adjacent, whenever $u_{1}$ is adjacent to $u_{2}$ in $G_{1}$ and $v_{1}$ is adjacent to $v_{2}$ in $G_{2} . G_{1}$ and $G_{2}$ are factors of $G_{1} \oplus G_{2}$. Other popular names for the tensor product that have appeared in the literature are Kronecker product, Cross product, Direct product and Conjunction product. Tensor product of graphs has been extensively studied by many authors, because of their applications and importance in the computer networks, pattern recognitions and computer graphics. For any integer $p \geq 1,\left(\oplus_{i=1}^{p} K_{2}\right)$ is the tensor product $\left(K_{2} \oplus K_{2} \oplus \ldots \oplus K_{2}\right)$, which consists of $p$ factors, each being isomorphic to $K_{2}$. By definition, $\left(\oplus_{i=1}^{p} K_{2}\right)=2^{p-1} K_{2}$. Consequently, $\left(\oplus_{i=1}^{p} K_{2}\right)=n K_{2}$ if and only if $n=2^{p-1}$.

Chartrand introduced the term graph valued function in [1]. Line graph, middle graph and the complement of a graph, are some examples of the graph valued functions. The concept of the line graph is so natural that it has been independently discovered by many authors in the past, (see, [5]). In a graph, if any two distinct edges $x$ and $y$ are incident with a common vertex, then they are incident edges. The line graph $L(G)$ of a graph $G$, is the graph whose vertex set is the edge set of $G$ and in which two vertices are adjacent, if the corresponding edges are incident in $G$. The iterated line graph of $G$, denoted by $L^{k}(G)$ is defined in a natural way as follows : $L^{0}(G)=G, L^{1}(G)=L(G)$ and $L^{k}(G)=L\left(L^{k-1}(G)\right)$ for $k \geq 1$. The notion of the middle graphs, was first introduced in 1973 in [9] as Semitotal(line)graphs. Surprisingly, this is also studied independently in 1976 in [4]. The middle graph $M(G)$ of a graph $G$ is the graph, whose vertex set is $V(G) \cup E(G)$ and two vertices of $M(G)$ are adjacent if either they are incident edges of $G$ or one is a vertex and the other is an edge of $G$ incident with it.

Graph equations are equations in which unknowns are graphs. The term graph equation was first used in [2]. Many problems in graph theory can be formulated in terms of graph equations. In the literature of graph equations, different types of equations have been solved by several authors. For example, (see, [6], [7], [10]). This gives a motivation to solve some more equations involving tensor product graphs,
line (or middle) graphs and their complements.
Now, for any integers $k, n \geq 1$, we solve the following four graph equations:
(1) $L^{k}(G)=H \oplus n K_{2}$,
(2) $M(G)=H \oplus n K_{2}$,
(3) $\overline{L^{k}(G)}=H \oplus n K_{2}$,
(4) $\overline{M(G)}=H \oplus n K_{2}$.

A pair of graphs $(G, H)$ satisfying an equation is a solution of the equation.
Now, we state two basic results, which shall be used in our later discussion.
Proposition 1.1.([3]) $C_{2 p+1} \oplus K_{2}=C_{2(2 p+1)}$ for $p \geq 1$.
Proposition 1.2.([8]) Let $G$ be a connected, bipartite graph. Then $G \oplus n K_{2}=2 n G$ for $n \geq 1$.

Next, we establish the following result for our immediate use.
Proposition 1.3. For any $t, n \geq 1, C_{2 t+1} \oplus n K_{2}=n C_{2(2 t+1)}$.
Proof. Notice that $C_{2 t+1} \oplus n K_{2}=n\left(C_{2 t+1} \oplus K_{2}\right)$ for $t \geq 1$. By Proposition 1.1, $C_{2 t+1} \oplus K_{2}=C_{2(2 t+1)}$. Therefore, $C_{2 t+1} \oplus n K_{2}=n C_{2(2 t+1)}$.

Let $G$ and $H$ be any two disjoint graphs. The union of $G$ and $H$, denoted by $G \cup H$, has $V(G \cup H)=V(G) \cup V(H)$ and $E(G \cup H)=E(G) \cup E(H)$. The join of $G$ and $H$, denoted by $G+H$, has $V(G+H)=V(G) \cup V(H)$ and $E(G+H)=$ $E(G \cup H) \cup\{u v: u \in V(G)$ and $v \in V(H)\}$. In order to solve our equations, we need the following result (see, [5, Theorem 8.4]) . A graph $G$ is a line graph if and only if $G$ has none of the nine specified graphs $G_{i}(1 \leq i \leq 9)$ as an induced subgraph. We mention here only four of nine graphs and their complements as given below:

$$
\begin{array}{ll}
G_{1}=K_{1,3} & \overline{\overline{G_{1}}}=K_{1} \cup K_{3} \\
G_{2}=\left(K_{1} \cup K_{2}\right)+\overline{K_{2}} & \overline{G_{2}}=K_{2} \cup P_{3} \\
G_{3}=K_{5}-x\left(\text { where } x \in E\left(K_{5}\right)\right) & \overline{G_{3}}=K_{2} \cup \overline{K_{3}} \\
G_{6}=K_{2}+2 K_{2} & \overline{G_{6}}=\overline{K_{2}} \cup K_{2,2}
\end{array}
$$

2. The Solution of $L^{k}(G)=H \oplus n K_{2}$

First, we establish the following lemma.
Lemma 2.1. Let $G$ be any graph without isolated vertices and let $H_{i}, i \in\{1,2\}$ be a nontrivial graph with at least one edge. Suppose $L(G)=H_{1} \oplus H_{2}$. Then $\Delta\left(H_{i}\right) \leq 2$.
Proof. On contrary, assume that $\Delta\left(H_{i}\right) \geq 3$ for some $i$. Let us consider $\Delta\left(H_{1}\right) \geq 3$. Then there exists a vertex $u$ in $H_{1}$ such that $\operatorname{deg}(u) \geq 3$. Let $u_{1}, u_{2}$ and $u_{3}$ be any three neighbours of $u$ in $H_{1}$ and $H_{2}$ is a nontrivial graph having at least one edge $e=v_{1} v_{2}$. Let us consider $M=\langle N[u]\rangle$ and $N=\langle\{e\}\rangle$. Clearly, either the vertices $\left(u, v_{1}\right),\left(u_{1}, v_{2}\right),\left(u_{2}, v_{2}\right),\left(u_{3}, v_{2}\right)$ or $\left(u, v_{2}\right),\left(u_{1}, v_{1}\right),\left(u_{2}, v_{1}\right),\left(u_{3}, v_{1}\right)$ induce a
subgraph isomorphic to $K_{1,3}$ in $M \oplus N$. Since $M \oplus N$ is a subgraph of $H_{1} \oplus H_{2}$, it follows that $H_{1} \oplus H_{2}$ contains $K_{1,3}$ as an induced subgraph. Hence $G_{1}$ is a forbidden induced subgraph of $H_{1} \oplus H_{2}$. From [5, Theorem 8.4], $H_{1} \oplus H_{2}$ is not a line graph of $G$. This is a contradiction to the fact that $H_{1} \oplus H_{2}=L(G)$.

Now, we shall solve the equation $L^{k}(G)=H \oplus n K_{2}$ for $k, n \geq 1$.
Theorem 2.2. Let $G$ be a graph without isolated vertices and let $H$ be any connected graph. Then $L^{k}(G)=H \oplus n K_{2}$ for $k, n \geq 1$, holds if and only if $(G, H)$ is one of the following pairs of graphs:

1. $\left(2 n P_{m+k}, P_{m}\right) ; m \geq 1$,
2. $\left(2 n C_{2 t}, C_{2 t}\right) ; t \geq 2$,
3. $\left(n C_{4 t+2}, C_{2 t+1}\right) ; t \geq 1$.

Proof. We first consider the case $k=1$ and find all pairs of graphs $(G, H)$ satisfying the following equation

$$
\begin{equation*}
L(G)=H \oplus n K_{2} \quad \text { for } n \geq 1 \tag{2.1}
\end{equation*}
$$

By Lemma 2.1, $H$ is either $P_{m}$ for $m \geq 1$ or $C_{p}$ for $p \geq 3$, because $H$ is connected. There are two cases to discuss :
Case 1. Assume that $H=P_{m} ; m \geq 1$. From Proposition 1.2, $L(G)=2 n P_{m}$. Hence, $G=2 n P_{m+1}$. Consequently, $\left(2 n P_{m+1}, P_{m}\right)$ is the solution of the equation (2.1).

Case 2. Assume that $H=C_{p} ; p \geq 3$.
We discuss two possibilities depending on $p$ :
(2.1). If $p=2 t+1 ; t \geq 1$, then $H$ is an odd cycle. By Proposition $1.3, L(G)=$ $n C_{2(2 t+1)}$. Consequently, $G=n C_{4 t+2}$. Thus, $\left(n C_{4 t+2}, C_{2 t+1}\right)$ is the possible solution of our equation (2.1).
(2.2). If $p=2 t ; t \geq 2$, then $H$ is an even cycle, which is connected and bipartite. From Proposition 1.2, $L(G)=2 n C_{2 t}$. Hence, $G=2 n C_{2 t}$. Thus, $\left(2 n C_{2 t}, C_{2 t}\right)$ is the solution of our equation (2.1).
Finally, consider $k \geq 2$. In this situation, the solution of the equation $L^{k}(G)=$ $H \oplus n K_{2}$ directly follows by the iterated nature of line graphs.

The converse of this theorem is obvious and hence it is omitted.
For any graph $G$, the endedge graph of $G$, denoted by $G^{+}$, is the graph obtained from $G$ by adjoining an endedge $u_{i} u_{i}$ at each vertex $u_{i}$ of $G$. Hamada et al., have shown in [4] that $M(G)=L\left(G^{+}\right)$.

Now, we shall solve the equation $M(G)=H \oplus n K_{2}$ for $n \geq 1$. Theorem 2.2, with $k=1$, provides three pairs of graphs $\left(2 n P_{m+1}, P_{m}\right)$ for $m \geq 1,\left(2 n C_{2 t}, C_{2 t}\right)$ for $t \geq 2$ and $\left(n C_{4 t+2}, C_{2 t+1}\right)$ for $t \geq 1$, which are the solutions of the equation $L(G)=H \oplus n K_{2}$ for $n \geq 1$. Among these pairs, only two pairs $\left(2 n K_{2}, K_{1}\right)$ and $\left(2 n P_{4}, P_{3}\right)$ are of the form $\left(G^{+}, H\right)$. In view of the result $M(G)=L\left(G^{+}\right)$, the following corollary is evident.

Corollary 2.3. Let $G$ be any graph and let $H$ be any connected graph. Then the equation $M(G)=H \oplus n K_{2}$ for $n \geq 1$, holds if and only if $(G, H)$ is either $\left(2 n K_{1}, K_{1}\right)$ or $\left(2 n K_{2}, P_{3}\right)$.
3. The Solution of $\overline{L^{k}(G)}=H \oplus n K_{2}$

We first solve the following equation

$$
\begin{equation*}
\overline{L(G)}=H \oplus n K_{2} \quad \text { for } n \geq 1 \tag{3.1}
\end{equation*}
$$

Theorem 3.1. Let $G$ and $H$ be any two graphs. Then $\overline{L(G)}=H \oplus n K_{2}$ for $n \geq 1$, holds if and only if $(G, H)$ is one of the following two possibilities:

1. $\left(K_{1,2 m n}, \overline{K_{m}}\right)$ for $m \geq 1$.
2. $n=1$ and $\left(K_{2, m}, K_{m}\right)$ for $m \geq 2$.

Proof. We discuss two cases, depending on the nature of $H$ :
Case 1. Suppose that $H$ has no edges. Then $H=\overline{K_{m}}$ for $m \geq 1$. Therefore, $\overline{L(G)}=2 n \overline{K_{m}}$ for $n \geq 1$. Consequently, $L(G)=K_{2 m n}$ and $G=K_{1,2 m n}$. In this case, $\left(K_{1,2 m n}, \overline{K_{m}}\right)$ is the solution of our equation (3.1).
Case 2. Suppose that $H$ has at least one edge. Then for $n \geq 2$, we see that $H \oplus n K_{2}$ contains an induced subgraph isomorphic to $K_{2} \oplus n K_{2}$. It is easy to check that $K_{2} \oplus n K_{2}$ contains $\overline{G_{3}}$ as a forbidden induced subgraph of $\overline{L(G)}$. Hence, there is no solution to $H \oplus n K_{2}=\overline{L(G)}$.

Now, there are two possibilities, depending on the connectivity of $H$ and $n=1$ : (2.1). Assume that $H$ is disconnected. Since $n=1$, immediately an induced subgraph isomorphic to $K_{1} \cup K_{2}$ appears in $H$. Further, we see that $\left(K_{1} \cup K_{2}\right) \oplus K_{2}=$ $\overline{K_{2}} \cup 2 K_{2}$ appears as an induced subgraph in $H \oplus K_{2}$ and it also contains a forbidden induced subgraph isomorphic to $\overline{G_{3}}$. Therefore, $H \oplus n K_{2}=\overline{L(G)}$ has no solution. (2.2). Assume that $H$ is connected.

We discuss three cases, depending on the size of $\Delta(H)$ :
(2.2.1). $\Delta(H)=1$.

Since $H$ is connected with at least one edge, it follows that $H=K_{2}$. Then $\overline{L(G)}=2 K_{2}$ and hence $L(G)=K_{2,2}$. Therefore, $G=K_{2,2}$.
(2.2.2). $\Delta(H)=2$.

Then $H$ is either a path $P_{m}$ for $m \geq 3$ or a cycle $C_{p}$ for $p \geq 3$. We see that $H$ is neither $P_{m}$ nor $C_{p}$ for $p \geq 4$. Otherwise, $H \oplus K_{2}$ contains a forbidden induced subgraph isomorphic to $\overline{G_{2}}$ and hence $H \oplus K_{2}=\overline{L(G)}$ has no solution. In this case, the only possibility for $H$ is $K_{3}$. Then $\overline{L(G)}=K_{3} \oplus K_{2}$ and hence $G$ is $K_{2,3}$.
(2.2.3). $\Delta(H) \geq 3$.

There are two cases to discuss :
Suppose that $H$ is a block. Then $H=K_{m}$ for $m \geq 4$. Otherwise, $K_{1} \cup K_{2}, P_{3}$ or $K_{4}-x$ (where $x \in E\left(K_{4}\right)$ ), appears as an induced subgraph in $H$. Consequently, $H \oplus K_{2}$ contains an induced subgraph isomorphic to $\overline{G_{3}}, \overline{G_{2}}$ or $\overline{G_{6}}$. Therefore, $H \oplus K_{2}=\overline{L(G)}$ has no solution. In this case, $H=K_{m}$. Then $\overline{L(G)}=K_{m} \oplus K_{2}$
and hence $G=K_{2, m}$.
Suppose that $H$ is not a block. Since $H$ is connected and $\Delta(G) \geq 3, H$ is a nontrivial graph having at least one cutvertex. Immediately, $P_{3}$ is an induced subgraph in $H$. Hence, $P_{3} \oplus K_{2}$ appears in $H \oplus K_{2}$ and hence $\overline{G_{2}}$ appears as a forbidden induced subgraph in $H \oplus K_{2}$. Therefore, $\overline{L(G)}=H \oplus K_{2}$ has no solution.

The converse of this theorem is obvious and hence it is omitted.
The immediate consequence of the above theorem is the following corollary.
Corollary 3.2. Let $G$ and $H$ be any two graphs. $\overline{L^{k}(G)}=H \oplus n K_{2}$ for $k \geq 2$ and $n \geq 1$, holds if and only if $n=1$ and $(G, H)$ is either $\left(P_{k+2}, K_{1}\right)$ or $\left(C_{4}, K_{2}\right)$.

Finally, we determine the solutions of the equation $\overline{M(G)}=H \oplus n K_{2}$ for $n \geq 1$. Notice that among the solutions of $\overline{L(G)}=H \oplus n K_{2}$ in Theorem 3.1, none is of the form $\left(G^{+}, H\right)$. Hence, the following corollary is evident.

Corollary 3.3. For any two graphs $G$ and $H$, the equation $\overline{M(G)}=H \oplus n K_{2}$ for $n \geq 1$, has no solution.

Acknowledgements. The authors are thankful to the referees for their many valuable suggestions and helpful comments, to improve our paper.

## References

[1] M. Behzad and G. Chartrand, Introduction to the theory of graphs, Allyn and Bacon. Inc. Boston, 1972.
[2] D. M. Cvetkovic, Spectrum of the total graph of a graph, Publ. Inst. Math. (Beograd), 16(30)(1973), 49-52.
[3] M. Farzan and D. A. Waller, Kronecker products and local joins of graphs, Canad. J. Math., 29(2)(1977), 255-269.
[4] T. Hamada and I. Yoshimura, Traversability and connectivity of the middle graph of a graph, Discrete Math., 14(1976), 247-255.
[5] F. Harary, Graph theory, Addison-Wesley Publishing Co., Reading, Mass-Menlo Park, Calif.-London, 1969.
[6] V. R. Kulli and H. P. Patil, Graph equations for line graphs, middle graphs and entire graphs, J. Karnatak Univ. Sci., 23(1978), 25-28.
[7] H. P. Patil and R. Pandiya Raj, Characterizations of $k$-ctrees and graph valued functions, J. Combin. Math. Combin. Comput., 84(2013), 91-98.
[8] H. P. Patil and V. Raja, On tensor product of graphs, girth and triangles, Iran. J. Math. Sci. Inform., 10(1)(2015), 139-147.
[9] E. Sampathkumar and S. B. Chikkodimath, Semi-total graphs of a graph I, J. Karnatak Univ. Sci., 18(1973), 274-280.
[10] D. V. S. S. Sastry and B. S. P. Raju, Graph equations for line graphs, middle graphs and quasitotal graphs, Discrete Math., 48(1984), 113-119.
[11] P. M. Weichsel, The Kronecker product of graphs, Proc. Amer. Math. Soc., 13(1962), 47-52.


[^0]:    * Corresponding Author.

    Received February 24, 2015; revised November 3, 2016; accepted January 21, 2017.
    2010 Mathematics Subject Classification: 05C40.
    Key words and phrases: tensor product of graphs, line graphs, middle graphs, complements, bipartite graphs, connected graphs.
    The first author Research supported by UGC-SAP DRS-II (2015) and the second author Research supported by UGC-BSR-SRF, Research Fellowship, Government of India, New Delhi, India.

