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Abstract. In this paper, we solve the following four graph equations Lk(G) = H ⊕
J ; M(G) = H⊕J ; Lk(G) = H⊕J and M(G) = H⊕J , where J is nK2 for n ≥ 1. Here,
the equality symbol = means the isomorphism between the corresponding graphs. In
particular, we shall obtain all pairs of graphs (G,H), which satisfy the above mentioned
equations, upto isomorphism.

1. Introduction

We shall consider only finite, simple and undirected graphs. We follow the
terminology of Harary [5]. For a graph G, let V (G) and E(G) denote the vertex
set and edge set of G, respectively. As in [5], let Pn, Cn and Kn denote a path,
cycle and complete graph, on n vertices, respectively. We call a graph with just
one vertex is trivial and all other graphs are nontrivial. The degree of a vertex v
in a graph G, is the number of edges incident to v and is denoted by deg(v). The
maximum degree of a graph G, is the maximum degree among the vertices of G and
is denoted by ∆(G). Let G be a graph. A subgraph H of G is an induced subgraph
of G if whenever u and v are vertices of H and uv is an edge of G, then uv is
also an edge of H. If S is a nonempty set of vertices of G, then the subgraph of G
induced by S, denoted by ⟨S⟩, is the induced subgraph with vertex set S. If X is a
nonempty set of edges of G, then the subgraph of G induced by X, denoted by ⟨X⟩,
is the induced subgraph of G, whose vertex set is the set of all vertices of edges in
X and whose edge set is X. Throughout this paper, the equality sign = means the
isomorphism between the corresponding graphs. A graph G is connected if there is
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at least one path between every pair of its vertices ; otherwise, G is disconnected.
A graph which is both connected and nontrivial is a nontrivial connected graph.
For a connected graph G, nG ; n ≥ 1, is the graph with n components, each being
isomorphic to G. The complement G of a graph G, is the graph whose vertex set
is V (G) and two vertices are adjacent in G if and only if they are not adjacent in
G. In any graph G, the set of vertices adjacent to a vertex u are the neighbours
of u and the neighbourhood of u is the set N(u) = {v ∈ V (G) : uv ∈ E(G)}. The
closed neighbourhood of u is N [u] = N(u) ∪ {u}. A graph G is bipartite graph if
V (G) can be partitioned into two subsets X and Y , such that every edge of G has
one end in X and the other end in Y . Further, if each vertex of X is joined to each
vertex of Y , then such a graph G is a complete bipartite graph and is denoted by
Km,n, where m = |X| and n = |Y |. A vertex of a connected graph is a cutvertex if
its removal produces a disconnected graph. A nontrivial connected graph with no
cutvertices is a block.

The tensor product of two graphs G1 and G2 (see, [3], [11]), is the graph denoted
by G1⊕G2, with vertex set V (G1⊕G2) = V (G1)×V (G2) and any two of its vertices
(u1, v1) and (u2, v2) are adjacent, whenever u1 is adjacent to u2 in G1 and v1 is
adjacent to v2 in G2. G1 and G2 are factors of G1 ⊕G2. Other popular names for
the tensor product that have appeared in the literature are Kronecker product, Cross
product, Direct product and Conjunction product. Tensor product of graphs has been
extensively studied by many authors, because of their applications and importance
in the computer networks, pattern recognitions and computer graphics. For any
integer p ≥ 1, (⊕p

i=1K2) is the tensor product (K2 ⊕K2 ⊕ . . .⊕K2), which consists
of p factors, each being isomorphic to K2. By definition, (⊕p

i=1K2) = 2p−1K2.
Consequently, (⊕p

i=1K2) = nK2 if and only if n = 2p−1.
Chartrand introduced the term graph valued function in [1]. Line graph, middle

graph and the complement of a graph, are some examples of the graph valued
functions. The concept of the line graph is so natural that it has been independently
discovered by many authors in the past, (see, [5]). In a graph, if any two distinct
edges x and y are incident with a common vertex, then they are incident edges.
The line graph L(G) of a graph G, is the graph whose vertex set is the edge set of
G and in which two vertices are adjacent, if the corresponding edges are incident
in G. The iterated line graph of G, denoted by Lk(G) is defined in a natural way
as follows : L0(G) = G, L1(G) = L(G) and Lk(G) = L(Lk−1(G)) for k ≥ 1.
The notion of the middle graphs, was first introduced in 1973 in [9] as Semitotal-
(line)graphs. Surprisingly, this is also studied independently in 1976 in [4]. The
middle graph M(G) of a graph G is the graph, whose vertex set is V (G) ∪ E(G)
and two vertices of M(G) are adjacent if either they are incident edges of G or one
is a vertex and the other is an edge of G incident with it.

Graph equations are equations in which unknowns are graphs. The term graph
equation was first used in [2] . Many problems in graph theory can be formulated
in terms of graph equations. In the literature of graph equations, different types of
equations have been solved by several authors. For example, (see, [6], [7], [10]). This
gives a motivation to solve some more equations involving tensor product graphs,
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line (or middle) graphs and their complements.
Now, for any integers k, n ≥ 1, we solve the following four graph equations:

(1) Lk(G) = H ⊕ nK2,

(2) M(G) = H ⊕ nK2,

(3) Lk(G) = H ⊕ nK2,

(4) M(G) = H ⊕ nK2.

A pair of graphs (G,H) satisfying an equation is a solution of the equation.
Now, we state two basic results, which shall be used in our later discussion.

Proposition 1.1.([3]) C2p+1 ⊕K2 = C2(2p+1) for p ≥ 1.

Proposition 1.2.([8]) Let G be a connected, bipartite graph. Then G⊕nK2 = 2nG
for n ≥ 1.

Next, we establish the following result for our immediate use.

Proposition 1.3. For any t, n ≥ 1, C2t+1 ⊕ nK2 = nC2(2t+1).

Proof. Notice that C2t+1 ⊕ nK2 = n(C2t+1 ⊕ K2) for t ≥ 1. By Proposition 1.1,
C2t+1 ⊕K2 = C2(2t+1). Therefore, C2t+1 ⊕ nK2 = nC2(2t+1). 2

Let G and H be any two disjoint graphs. The union of G and H, denoted by
G ∪H, has V (G ∪H) = V (G) ∪ V (H) and E(G ∪H) = E(G) ∪ E(H). The join
of G and H, denoted by G+H, has V (G+H) = V (G) ∪ V (H) and E(G+H) =
E(G∪H)∪{uv : u ∈ V (G) and v ∈ V (H)}. In order to solve our equations, we need
the following result (see, [5, Theorem 8.4]) . A graph G is a line graph if and only
if G has none of the nine specified graphs Gi (1 ≤ i ≤ 9) as an induced subgraph.
We mention here only four of nine graphs and their complements as given below:

G1 = K1,3 G1 = K1 ∪K3

G2 = (K1 ∪K2) +K2 G2 = K2 ∪ P3

G3 = K5 − x (where x ∈ E(K5)) G3 = K2 ∪K3

G6 = K2 + 2K2 G6 = K2 ∪K2,2

2. The Solution of Lk(G) = H ⊕ nK2

First, we establish the following lemma.

Lemma 2.1. Let G be any graph without isolated vertices and let Hi, i ∈ {1, 2} be a
nontrivial graph with at least one edge. Suppose L(G) = H1⊕H2. Then ∆(Hi) ≤ 2.

Proof. On contrary, assume that ∆(Hi) ≥ 3 for some i. Let us consider ∆(H1) ≥ 3.
Then there exists a vertex u in H1 such that deg(u) ≥ 3. Let u1, u2 and u3 be
any three neighbours of u in H1 and H2 is a nontrivial graph having at least one
edge e = v1v2. Let us consider M = ⟨N [u]⟩ and N = ⟨{e}⟩. Clearly, either the
vertices (u, v1), (u1, v2), (u2, v2), (u3, v2) or (u, v2), (u1, v1), (u2, v1), (u3, v1) induce a
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subgraph isomorphic to K1,3 in M ⊕N . Since M ⊕N is a subgraph of H1 ⊕H2, it
follows that H1⊕H2 contains K1,3 as an induced subgraph. Hence G1 is a forbidden
induced subgraph of H1 ⊕H2. From [5, Theorem 8.4], H1 ⊕H2 is not a line graph
of G. This is a contradiction to the fact that H1 ⊕H2 = L(G). 2

Now, we shall solve the equation Lk(G) = H ⊕ nK2 for k, n ≥ 1.

Theorem 2.2. Let G be a graph without isolated vertices and let H be any connected
graph. Then Lk(G) = H ⊕ nK2 for k, n ≥ 1, holds if and only if (G,H) is one of
the following pairs of graphs:

1. (2nPm+k, Pm); m ≥ 1,
2. (2nC2t, C2t); t ≥ 2,
3. (nC4t+2, C2t+1); t ≥ 1.

Proof. We first consider the case k = 1 and find all pairs of graphs (G,H) satisfying
the following equation

L(G) = H ⊕ nK2 for n ≥ 1.(2.1)

By Lemma 2.1, H is either Pm for m ≥ 1 or Cp for p ≥ 3, because H is connected.
There are two cases to discuss :
Case 1. Assume that H = Pm ; m ≥ 1. From Proposition 1.2, L(G) = 2nPm.
Hence, G = 2nPm+1. Consequently, (2nPm+1 , Pm) is the solution of the equation
(2.1).
Case 2. Assume that H = Cp ; p ≥ 3.
We discuss two possibilities depending on p :
(2.1). If p = 2t + 1 ; t ≥ 1, then H is an odd cycle. By Proposition 1.3, L(G) =
nC2(2t+1). Consequently, G = nC4t+2. Thus, (nC4t+2, C2t+1) is the possible
solution of our equation (2.1).
(2.2). If p = 2t ; t ≥ 2, then H is an even cycle, which is connected and bipartite.
From Proposition 1.2, L(G) = 2nC2t. Hence, G = 2nC2t. Thus, (2nC2t, C2t) is
the solution of our equation (2.1).
Finally, consider k ≥ 2. In this situation, the solution of the equation Lk(G) =
H ⊕ nK2 directly follows by the iterated nature of line graphs.

The converse of this theorem is obvious and hence it is omitted. 2

For any graph G, the endedge graph of G, denoted by G+, is the graph obtained
from G by adjoining an endedge uiu

′

i at each vertex ui of G. Hamada et al., have
shown in [4] that M(G) = L(G+).

Now, we shall solve the equation M(G) = H ⊕ nK2 for n ≥ 1. Theorem 2.2,
with k = 1, provides three pairs of graphs (2nPm+1, Pm) for m ≥ 1, (2nC2t , C2t)
for t ≥ 2 and (nC4t+2 , C2t+1) for t ≥ 1, which are the solutions of the equation
L(G) = H ⊕ nK2 for n ≥ 1. Among these pairs, only two pairs (2nK2,K1) and
(2nP4, P3) are of the form (G+, H). In view of the result M(G) = L(G+), the
following corollary is evident.
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Corollary 2.3. Let G be any graph and let H be any connected graph. Then
the equation M(G) = H ⊕ nK2 for n ≥ 1, holds if and only if (G,H) is either
(2nK1, K1) or (2nK2, P3).

3. The Solution of Lk(G) = H ⊕ nK2

We first solve the following equation

L(G) = H ⊕ nK2 for n ≥ 1.(3.1)

Theorem 3.1. Let G and H be any two graphs. Then L(G) = H ⊕nK2 for n ≥ 1,

holds if and only if (G,H) is one of the following two possibilities:
1. (K1,2mn, Km) for m ≥ 1.
2. n = 1 and (K2,m, Km) for m ≥ 2.

Proof. We discuss two cases, depending on the nature of H:
Case 1. Suppose that H has no edges. Then H = Km for m ≥ 1. Therefore,
L(G) = 2nKm for n ≥ 1. Consequently, L(G) = K2mn and G = K1,2mn. In this
case, (K1,2mn, Km) is the solution of our equation (3.1).
Case 2. Suppose that H has at least one edge. Then for n ≥ 2, we see that
H⊕nK2 contains an induced subgraph isomorphic to K2⊕nK2. It is easy to check
that K2 ⊕nK2 contains G3 as a forbidden induced subgraph of L(G). Hence, there
is no solution to H ⊕ nK2 = L(G).

Now, there are two possibilities, depending on the connectivity of H and n = 1:
(2.1). Assume that H is disconnected. Since n = 1, immediately an induced sub-
graph isomorphic to K1∪K2 appears in H. Further, we see that (K1∪K2) ⊕ K2 =
K2∪2K2 appears as an induced subgraph in H⊕K2 and it also contains a forbidden
induced subgraph isomorphic to G3. Therefore, H ⊕ nK2 = L(G) has no solution.
(2.2). Assume that H is connected.
We discuss three cases, depending on the size of ∆(H) :
(2.2.1). ∆(H) = 1.
Since H is connected with at least one edge, it follows that H = K2. Then
L(G) = 2K2 and hence L(G) = K2,2. Therefore, G = K2,2.
(2.2.2). ∆(H) = 2.
Then H is either a path Pm for m ≥ 3 or a cycle Cp for p ≥ 3. We see that H
is neither Pm nor Cp for p ≥ 4. Otherwise, H ⊕K2 contains a forbidden induced
subgraph isomorphic to G2 and hence H⊕K2 = L(G) has no solution. In this case,
the only possibility for H is K3. Then L(G) = K3 ⊕K2 and hence G is K2,3.
(2.2.3). ∆(H) ≥ 3.
There are two cases to discuss :
Suppose that H is a block. Then H = Km for m ≥ 4. Otherwise, K1 ∪K2, P3 or
K4 − x (where x ∈ E(K4)), appears as an induced subgraph in H. Consequently,
H ⊕ K2 contains an induced subgraph isomorphic to G3, G2 or G6. Therefore,
H ⊕K2 = L(G) has no solution. In this case, H = Km. Then L(G) = Km ⊕K2
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and hence G = K2,m.
Suppose that H is not a block. Since H is connected and ∆(G) ≥ 3,H is a nontriv-
ial graph having at least one cutvertex. Immediately, P3 is an induced subgraph
in H. Hence, P3 ⊕ K2 appears in H ⊕ K2 and hence G2 appears as a forbidden
induced subgraph in H ⊕K2. Therefore, L(G) = H ⊕K2 has no solution.

The converse of this theorem is obvious and hence it is omitted. 2

The immediate consequence of the above theorem is the following corollary.

Corollary 3.2. Let G and H be any two graphs. Lk(G) = H⊕nK2 for k ≥ 2 and
n ≥ 1, holds if and only if n = 1 and (G,H) is either (Pk+2, K1) or (C4, K2).

Finally, we determine the solutions of the equation M(G) = H⊕nK2 for n ≥ 1.
Notice that among the solutions of L(G) = H ⊕nK2 in Theorem 3.1, none is of the
form (G+,H). Hence, the following corollary is evident.

Corollary 3.3. For any two graphs G and H, the equation M(G) = H ⊕ nK2 for
n ≥ 1, has no solution.
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