• Title/Summary/Keyword: Iteration Method

Search Result 1,145, Processing Time 0.028 seconds

EFFICIENCY ANALYSIS OF A DOMAIN DECOMPOSITION METHOD FOR THE TWO-DIMENSIONAL TELEGRAPH EQUATIONS

  • Jun, Younbae
    • East Asian mathematical journal
    • /
    • v.37 no.3
    • /
    • pp.295-305
    • /
    • 2021
  • In this paper, we analyze the efficiency of a domain decomposition method for the two-dimensional telegraph equations. We formulate the theoretical spectral radius of the iteration matrix generated by the domain decomposition method, because the rate of convergence of an iterative algorithm depends on the spectral radius of the iteration matrix. The theoretical spectral radius is confirmed by the experimental one using MATLAB. Speedup and operation ratio of the domain decomposition method are also compared as the two measurements of the efficiency of the method. Numerical results support the high efficiency of the domain decomposition method.

Efficient MCS for random vibration of hysteretic systems by an explicit iteration approach

  • Su, Cheng;Huang, Huan;Ma, Haitao;Xu, Rui
    • Earthquakes and Structures
    • /
    • v.7 no.2
    • /
    • pp.119-139
    • /
    • 2014
  • A new method is proposed for random vibration anaylsis of hysteretic systems subjected to non-stationary random excitations. With the Bouc-Wen model, motion equations of hysteretic systems are first transformed into quasi-linear equations by applying the concept of equivalent excitations and decoupling of the real and hysteretic displacements, and the derived equation system can be solved by either the precise time integration or the Newmark-${\beta}$ integration method. Combining the numerical solution of the auxiliary differential equation for hysteretic displacements, an explicit iteration algorithm is then developed for the dynamic response analysis of hysteretic systems. Because the computational cost for a large number of deterministic analyses of hysteretic systems can be significantly reduced, Monte-Carlo simulation using the explicit iteration algorithm is now viable, and statistical characteristics of the non-stationary random responses of a hysteretic system can be obtained. Numerical examples are presented to show the accuracy and efficiency of the present approach.

FUNCTIONAL ITERATIVE METHODS FOR SOLVING TWO-POINT BOUNDARY VALUE PROBLEMS

  • Lim, Hyo Jin;Kim, Kyoum Sun;Yun, Jae Heon
    • Journal of applied mathematics & informatics
    • /
    • v.31 no.5_6
    • /
    • pp.733-745
    • /
    • 2013
  • In this paper, we first propose a new technique of the functional iterative methods VIM (Variational iteration method) and NHPM (New homotopy perturbation method) for solving two-point boundary value problems, and then we compare their numerical results with those of the finite difference method (FDM).

Adaptive Iterative Depeckling of SAR Imagery

  • Lee, Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.5
    • /
    • pp.455-464
    • /
    • 2007
  • Lee(2007) suggested the Point-Jacobian iteration MAP estimation(PJIMAP) for noise removal of the images that are corrupted by multiplicative speckle noise. It is to find a MAP estimation of noisy-free imagery based on a Bayesian model using the lognormal distribution for image intensity and an MRF for image texture. When the image intensity is logarithmically transformed, the speckle noise is approximately Gaussian additive noise, and it tends to a normal probability much faster than the intensity distribution. The MRF is incorporated into digital image analysis by viewing pixel types as states of molecules in a lattice-like physical system. In this study, the MAP estimation is computed by the Point-Jacobian iteration using adaptive parameters. At each iteration, the parameters related to the Bayesian model are adaptively estimated using the updated information. The results of the proposed scheme were compared to them of PJIMAP with SAR simulation data generated by the Monte Carlo method. The experiments demonstrated an improvement in relaxing speckle noise and estimating noise-free intensity by using the adaptive parameters for the Ponit-Jacobian iteration.

The Determination of Take-Off Time in Iteration on Dynamic Susceptibility Contrast Agent MR Perfusion Imaging

  • 김대원;류완석;정성택
    • Proceedings of the KSMRM Conference
    • /
    • 2003.10a
    • /
    • pp.79-80
    • /
    • 2003
  • In existing method, the threshold has determined the points to be used in extrapolation and only pre-peak points were used to find t0. However, to reduce error in using this fitting method, in this study, finding t0is considered the correlation between fitting result and each profile in using iteration method. And the proposed method is compared with the existing method.

  • PDF

Numerical Solutions of Third-Order Boundary Value Problems associated with Draining and Coating Flows

  • Ahmed, Jishan
    • Kyungpook Mathematical Journal
    • /
    • v.57 no.4
    • /
    • pp.651-665
    • /
    • 2017
  • Some computational fluid dynamics problems concerning the thin films flow of viscous fluid with a free surface and draining or coating fluid-flow problems can be delineated by third-order ordinary differential equations. In this paper, the aim is to introduce the numerical solutions of the boundary value problems of such equations by variational iteration method. In this paper, it is shown that the third-order boundary value problems can be written as a system of integral equations, which can be solved by using the variational iteration method. These solutions are gleaned in terms of convergent series. Numerical examples are given to depict the method and their convergence.

A CELL BOUNDARY ELEMENT METHOD FOR A FLUX CONTROL PROBLEM

  • Jeon, Youngmok;Lee, Hyung-Chun
    • Journal of the Korean Mathematical Society
    • /
    • v.50 no.1
    • /
    • pp.81-93
    • /
    • 2013
  • We consider a distributed optimal flux control problem: finding the potential of which gradient approximates the target vector field under an elliptic constraint. Introducing the Lagrange multiplier and a change of variables the Euler-Lagrange equation turns into a coupled equation of an elliptic equation and a reaction diffusion equation. The change of variables reduces iteration steps dramatically when the Gauss-Seidel iteration is considered as a solution method. For the elliptic equation solver we consider the Cell Boundary Element (CBE) method, which is the finite element type flux preserving methods.

Nonlinear vibration of multi-body systems with linear and nonlinear springs

  • Bayat, Mahmoud;Pakar, Iman;Bayat, Mahdi
    • Steel and Composite Structures
    • /
    • v.25 no.4
    • /
    • pp.497-503
    • /
    • 2017
  • In this paper, nonlinear vibration of multi-degree of freedom systems are studied. It has been tried to develop the mathematical model of systems by second-order nonlinear partial differential equations. The masses are connected with linear and nonlinear springs in series. A great effort has been done to solve the nonlinear governing equations analytically. A new analytical method called Variational Iteration Method (VIM) is proposed and successfully applied to the problem. The linear and nonlinear frequencies are obtained and the results are compared with numerical solutions. The first order of Variational Iteration Method (VIM) leads us to high accurate solution.

STRONG CONVERGENCE OF HYBRID METHOD FOR ASYMPTOTICALLY NONEXPANSIVE MAPPINGS AND SEMIGROUPS

  • Liu, Li;Wang, Lijing;Su, Yongfu
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.3_4
    • /
    • pp.669-680
    • /
    • 2011
  • In this paper, some strong convergence theorems are obtained for hybrid method for modified Ishikawa iteration process of asymptotically nonexpansive mappings and asymptotically nonexpansive semigroups in Hilbert spaces. The results presented in this article generalize and improve results of Tae-Hwa Kim and Hong-Kun Xu and others. The convergence rate of the iteration process presented in this article is faster than hybrid method of Tae-Hwa Kim and Hong-Kun Xu and others.