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A CELL BOUNDARY ELEMENT METHOD

FOR A FLUX CONTROL PROBLEM

Youngmok Jeon and Hyung-Chun Lee

Abstract. We consider a distributed optimal flux control problem: find-
ing the potential of which gradient approximates the target vector field
under an elliptic constraint. Introducing the Lagrange multiplier and
a change of variables the Euler-Lagrange equation turns into a coupled
equation of an elliptic equation and a reaction diffusion equation. The
change of variables reduces iteration steps dramatically when the Gauss-
Seidel iteration is considered as a solution method. For the elliptic equa-
tion solver we consider the Cell Boundary Element (CBE) method, which

is the finite element type flux preserving methods.

1. Introduction

In this article, we consider a distributed optimal control problem for a second
order partial differential equation: seek (u, p) ∈ H1(Ω)×L2(Ω) which minimizes
the cost functional

(1.1) J (u, p) = Jud
(u) + δN(p)

subject to

(1.2) −∇ · (a∇u) = p on Ω,

where Jud
(u) and N(p) are some (semi)norms of u and p, respectively and

the parameter, δ is a positive regularization parameter. We assume that Ω =
∪J
j=1Ωj is a simply connected polygonal domain with the boundary Γ. The

permeability coefficient, a is a positive definite, symmetric tensor and it is
constant on each subdomain Ωj .

In our problem the target function ud ∈ H1(Ω) will be used to provide
the target flux field ∇ud and the Dirichlet boundary condition u = ud on Γ.
Throughout this article we assume u = ud = 0 on Γ to simplify our analysis.
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Thus, we consider the gradient tracking functional

(1.3) Jud
(u) =

1

2

∫

Ω

a∇(u − ud) · ∇(u − ud) dx.

The second term of the cost functional is introduced in order to bound the
control function and to prove the existence of an optimal control. In general,

(1.4) N(p) =
1

2

∫

Ω

p2 dx.

The distributed optimal control problem can be derived from many physical
applications [2, 4, 5]. For a subsurface flow problem, we are looking for the
optimal solution u and the source distribution p so that the gradients of a po-
tential flow approximate the target vector field optimally in a certain measure.
In approximation of the optimality solution the flux conservation property of
numerical solutions is very important. In transport problems of substances
embedded in a potential flow, the distribution of substances satisfies a time
dependent convection diffusion equation driven by the gradients of the flow [8].
In this case flux preserving approximation of gradients for the potential flow
is crucial in obtaining physically relevant time evolution of substance distribu-
tion. For this reason, we introduce a Cell Boundary Element (CBE) numerical
method for the optimal control problem. The CBE method is introduced by
Jeon et al. [6, 7] and it can be understood as a finite element version of the
finite volume method (it is different from the finite volume element method).
The main advantage of the CBE method is that it is a flux preserving numerical
method while it does not need a costly covolume generation.

The main contributions of the paper can be summarized as follows: firstly, a
change of variables is introduced to transform the Euler-Lagrange equation to
an equivalent computing friendly form. The transformed equation reduces the
number of iteration dramatically when it is combined with the Gauss-Seidel
iteration, especially for nonlinear problems. Secondly, the CBE method is used
as a numerical method for the control problem.

The paper is organized as follows. In Section 2 we derive the optimality
equations and introduce a change of variables to transform it to a computing
friendly system of equations. The transformed equations are composed of a
standard elliptic equation and a reaction dominated diffusion equation. In
Section 3 numerical methods for elliptic equations are introduced and analyzed,
the CBE method for the elliptic equation and the lowest Crouzeix-Raviart finite
element method for the reaction diffusion equation. In Section 4 numerical
analysis for the optimality equations are presented. In Section 5 we consider
a nonlinear optimal control problem and a Gauss-Seidel iteration method is
introduce. In Section 6 we present our numerical examples for linear and
nonlinear optimal problems.
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2. The optimality system

Firstly, we introduce the standard Sobolev space, Hs(Ω) (s ≥ 0) with the
norm ‖ · ‖s,Ω. The L2 space is the space of square integrable functions. The
space Hs

0(Ω) is the subspace of Hs(Ω) with null trace. By the nature of the
problem, we consider a specialized norm:

H1
a(div; Ω) = {u ∈ H1(Ω) : ∇ · (a∇u) ∈ L2(Ω)}.

Introducing a Lagrange multiplier, the constrained minimization problem
(1.1)-(1.2) becomes a min-max problem of the functional:

(2.1)

L(u, p, λ) =
1

2

∫

Ω

a∇(u − ud) · ∇(u − ud) dx+
δ

2

∫

Ω

p2 dx

+

∫

Ω

(−∇ · (a∇u)− p)λdx.

Then, the Euler-Lagrange equation (the first optimality condition),

∂L

∂u
= 0,

∂L

∂p
= 0 and

∂L

∂λ
= 0,

induces a coupled system of differential equations: for (u, λ) ∈ H1
a(div; Ω) ∩

H1
0 (Ω))× L2(Ω),

(a∇(u− ud),∇v)Ω + (−∇ · (a∇v), λ)Ω = 0, v ∈ H1
a(div; Ω) ∩H1

0 (Ω),(2.2)

δ(p, h)Ω − (h, λ)Ω = 0, h ∈ L2(Ω),(2.3)

(−∇ · (a∇u)− p, µ)Ω = 0, µ ∈ L2(Ω),(2.4)

where (u, v) =
∫

Ω
uv dΩ.

To derive a strong form of differential equations, we impose a stronger reg-
ularity and an artificial boundary condition for the Lagrange multiplier, that
is, λ ∈ H1

a(div; Ω) ∩H1
0 (Ω). From (2.3) we set

(2.5) p =
λ

δ
.

The integration by parts with the boundary conditions v = λ = 0 on Γ yields

−∇ · (a∇u)−∇ · (a∇λ) = −∇ · (a∇ud),(2.6)

−∇ · (a∇u)− λ

δ
= 0,(2.7)

on Ω with the boundary condition u = λ = 0 on Γ.
Note that the Gataux differentiability for the Lagrangian can easily be

proven (see [2, 4] and references therein).
Introducing a new variable w so that w = u+ λ, we can have the following

computation friendly form of the equations (2.6) and (2.7): find (w, λ, u) ∈
H1

a(div; Ω)× (H1
a(div; Ω)×H1

0 (Ω))×H1
a(div; Ω) that satisfies

−∇ · (a∇w) = fd,(2.8)

δ∇ · (a∇w) + {−δ∇ · (a∇λ) + λ} = 0,(2.9)
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−w + λ+ u = 0(2.10)

on Ω and the boundary conditions w = λ = 0 on Γ, where fd = −∇ · (a∇ud).
Introduction of a new variable w is very important when one tries to solve
a nonlinear optimal control problem (see Section 5). Applying the Gauss-
Seidel iteration in the equations (2.6) and (2.7) may be costly, while the Gauss-
Seidel iteration for the equations (2.8)-(2.10) provides a stable, fast convergent
numerical scheme.

We suggest the Gauss-Seidel iteration for the equation (2.8)-(2.10) as follows:

−∇ · (a∇wn+1) = fd,(2.11)

−δ∇ · (a∇λn+1) + λn+1 = δ{−∇ · (a∇wn+1)},(2.12)

un+1 = wn+1 − λn+1,(2.13)

with the boundary conditions, wn+1 = 0 and λn+1 = 0 on Γ.
Indeed, the above Gauss-Seidel iteration ends at one iteration for a linear

problem.

3. Numerical methods for elliptic equations

In this paper we are looking for the almost flux conserving numerical so-
lution for the optimal problem under the assumption that the regularization
parameter δ is small. For that we consider the Cell Boundary Element (CBE)
method for (2.11) and the nonconforming finite element method (NcFEM) for
(2.12). Since the NcFEM is not a flux preserving method, our method will
not be exactly flux preserving. However, in view of the equation (2.12), the

exact solution λ will satisfy the estimate,
√
δ|λ|1,Ω + ‖λ‖0,Ω ≤ Cδ. Therefore,

using the NcFEM for the equation (2.12) will have a very little influence on
flux conservation property of the other solutions u and w when the parameter
δ is a small positive number.

In this section we review the CBE method and the NcFEM, briefly and
detailed description on those method will be found [6, 7] and [1], respectively.

Let Th be the regular triangulation of Ω = ∪J
j=1Ωj and Γh the discretization

of Γ, induced by Th. Then Eh and E0
h denote the set of edges and interior edges

generated by Th, respectively, and Mh denotes the set of midpoints of edges.
The skeleton of a triangulation Th is Kh = ∪e∈Eh

e.
Introduce the nonconforming P1 approximation space for v:

(3.1)
Sh = {v ∈ ⊕T∈Th

ST : v is continuous on Mh and v(p) = 0 for p ∈ Γh∩Mh}

with ST = span{1, x, y}. Then, there is a natural interpolation Ih : C(Ω) → Sh

such that

(3.2) Ih(u)(x) =
∑

m∈Mh

u(m)φm(x).
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We also introduce discrete Sobolev seminorms and norms; for k ∈ Z,

(3.3) |u|2k,h =
∑

T∈Th

|u|2k,T , ‖u‖2k,h = ‖u‖20,Ω +
∑

T∈Th

|u|2k,T .

The analysis for the reaction diffusion equation is based on the following norm:

(3.4) ‖u‖2δ,h = δ|u|21,h + ‖u‖20,Ω.

3.1. The cell boundary element method for the elliptic equation

Consider a Dirichlet problem: find u ∈ H1
0 (Ω) such that

−∇ · (a∇u) = f in Ω,(3.5)

where f is a piecewise constant function, f ∈ L2(Ω). When f is not a piecewise
constant function we approximate f by the volume preserving approximation,
that is, fh|T = 1

|T |

∫

T
fdx. If f ∈ L2(Ω), this approximation introduces error

of the order O(h) in the energy norm. Therefore, the overall approximation
property of u does not change with the P1 CBE method.

To derive the CBE method we consider the localized problem of (3.5):

−∇ · (a∇u) = f in T,

[[∇u]] = 0 on e ∈ E0
h.(3.6)

The jump of normal fluxes is defined as follows:

(3.7) [[∇u]] ≡
{

(a∇u) · ν + (a′∇u) · ν′, e = ∂T ∩ ∂T ′,
(a∇u) · ν, e = ∂T ∩ Γh,

where ν and ν′ are the unit outward normal vectors on ∂T and ∂T ′, respectively.
The solution u of (3.6) allows locally the following superposition:

(3.8) u = v +G(fh) on T.

Here v satisfies −∇ · (a∇v) = 0 on T and v = u on ∂T , and G(f) is a Green
bubble function such that −∇(a∇(G(f)) = f on T and G(f) = 0 on ∂T . Then
we have

[[∇u]] = [[∇v]] + [[∇G(f)]] on e ∈ Eh.
Using flux continuity on cell interfaces, we have

(3.9)

∫

e

[[∇v]]ds = −
∫

e

[[∇G(f)]]ds, e ∈ E0
h.

Introducing a piecewise constant test function on Kh such that wh = 1
|e|

∫

e
whds

with wh ∈ Sh, we can rewrite the above equation:

(3.10)

∫

Kh

[[∇v]]whds = −
∫

Kh

[[∇G(f)]]whds, wh ∈ Sh.

Let us introduce the natural interpolation Ih,T : C(T ) → ST . As long
as there is no risk of misunderstanding, we denote Ih,T by Ih for notational
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simplicity. Then we consider approximation of the bubble function G(f). Let
a = [ a11 a12

a21 a22
] on T . Then we may take

Gh(f) = F (f)− Ih(F (f)) with F (f) =
f

2(a11 + a22)
(x2 + y2)

on T . Then we have Gh(f) ≈ G(f) and −∇ · (a∇Gh(f)) = f on T . Note that
f is constant on each T .

The P1 CBE method is to find vh ∈ Sh such that

(3.11)

∫

Kh

[[∇vh]]whds = −
∫

Kh

[[∇Gh(f)]]whds.

After vh being obtained, we obtain the approximate solution and its flux as
follows.

uh = vh +Gh(f), a∇uh = a∇vh + a∇Gh(f).

Now we introduce some results on numerical analysis [6]. Theorem 3.1 as-
serts that the CBE has the same stiffness matrix as the Crouzeix-Raviart P1

finite element method, while the right hand side is different by Dh. Theorem
3.2 provides a convergence result.

Theorem 3.1. The stiffness matrix and the right hand side of the equation

(3.11) satisfy the following relations: for vh, wh ∈ Sh
∫

Kh

[[∇vh]] whds = (a∇vh,∇wh)h

and

−
∫

Kh

[[∇Gh(f)]]whds = (f, wh)h +Dh(f, wh),

where

Dh(f, wh) = −
∑

T∈Th

[(∂a
νG(f), wh − wh)∂T + (a∇Gh(f),∇wh)T ].

Here, (∇u,∇v)h =
∑

T∈τh
(∇u,∇v)T and ∂a

νG(f) = (a∇G(f)) · ν.
Proof. Since ∇vh is constant on each T , using the integration by parts,

∫

Kh

[[∇vh]] whds =

∫

Kh

[[∇vh]] whds

=
∑

T∈Th

∫

∂T

(a∇vh) · ν whds

= (a∇vh,∇wh)h.

Now,

−
∫

Kh

[[∇Gh(f)]]whds

= −
∫

Kh

[[∇Gh(f)]]whds−
∫

Kh

[[∇Gh(f)]](wh − wh)ds
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= −
∑

T∈Th

[(∂a
νG(f), wh)∂T + (∂a

νG(f), wh − wh)∂T ]

= (f, wh)Ω −
∑

T∈Th

[(a∇Gh(f),∇wh)T + (∂a
νG(f), wh − wh)∂T ] .

Then, the theorem is proved. �

Theorem 3.2. For f ∈ L2(Ω), let u be the exact solution of (3.5) and uh be

the P1 CBE approximate solution. Then

‖u− uh‖1,h ≤ Ch‖f‖0,Ω.
Proof. The proof is based on the proof of the lowest order Crouzeix-Raviart
finite element method. The lowest order Crouzeix-Raviart finite element solu-
tion, uCR

h satisfies

(a∇uCR
h ,∇wh)h = (f, wh)Ω, wh ∈ Sh.

Simple calculation yields that

(a∇(uh − uCR
h ),∇wh)h = Dh(f, wh).

Since Gh(f) = F (f)− Ih(F (f)),

|(∂a
νG(f),∇wh)T | ≤ Ch|F (f)|2,T |wh|1,T ≤ C‖f‖0,T |wh|1,T .

Using Corollary (10.17) with the scaling argument in [1],

|(a∇Gh(f), wh − wh)∂T | ≤ Ch|Gh(f)|2,T |wh|1,T ≤ Ch‖f‖0,T |wh|1,T .
Then

|Dh| ≤ Ch‖f‖0,Ω‖wh‖1,h.
Therefore,

|(∇(uCR
h − uh,∇wh)T | ≤ Ch‖f‖0,T |wh|1,T .

It is well-known that ‖u− uCR
h ‖1,h ≤ Ch‖f‖0,Ω. The triangle inequality with

the Poincaré-Friedrichs inequality [1, 3] yields the desired convergence estimate.
�

3.2. The nonconforming finite element method for the reaction dif-

fusion equation

The finite element method of the reaction diffusion equation is described
briefly. The nonconforming P1 finite element method for the reaction diffusion
equation has advantage in that it has a mass-lumping property, which prevents
non-physical oscillations in numerical solutions on the region of boundary layer
[9].

Consider a reaction diffusion equation with the Dirichlet boundary condition:

−δ∇ · (a∇λ) + λ = f in Ω,(3.12)

λ = 0 on Γ.
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The lowest order Crouzeix-Raviart finite element method is to find λh ∈ Sh

such that

(3.13) δ(a∇λh,∇γh)h + (λh, γh)Ω = (f, γh)Ω, γh ∈ Sh.

Then the following convergence analysis is straightforward and it is found in
standard textbooks [1], [9].

Theorem 3.3. The exact and its approximate solutions, λ and λh satisfy the

convergence estimate:

(3.14) ‖λ− λh‖δ,h ≤ C(h2 +
√
δh)(‖f‖0,Ω + ‖λ‖0,Ω).

Proof. By the integration by parts,

δ(a∇λh,∇γ)h + (λh, γ)Ω = δ(a∇λ,∇γ)h + (λ, γ)Ω + Eh, γ ∈ Sh,

where

Eh = −δ
∑

T∈Th

〈∂a
νλ, γ〉∂T = −δ

∑

T∈Th

〈∂a
νλ, γ − γ〉∂T

since ∂a
νλ is continuous and γ is single valued on Kh. Using Corollary (10.17)

with the scaling argument in [1], we have

|Eh| ≤ δ
∑

T∈Th

|〈∂a
νλ, γ − γ〉∂T |

≤ Chδ
∑

T∈Th

|λ|2,T |γ|1,T

≤ Chδ|λ|2,h|γ|1,h.
Then, for µ ∈ Sh,

δ(a∇(λh − µ),∇γ)h + ((λh − µ), γ)Ω

= δ(a∇(λ− µ),∇γ)h + ((λ− µ), γ)Ω + Eh, γ ∈ Sh.

Taking γ = λh − µ, we have

‖λh − µ‖δ,h ≤
√
δ‖λ− µ‖1,h + ‖λ− µ‖0,Ω + C

√
δh|λ|2,h

≤ C(
√
δh+ h2)‖λ‖2,h

for an optimal µ ∈ Sh. Since ‖λ‖2,Ω ≤ C(‖f‖0,Ω + ‖λ‖0,Ω) [3], the triangle
inequality yields

‖λ− λh‖δ,h ≤ C(h2 +
√
δh)(‖f‖0,Ω + ‖u‖0,Ω). �

4. Numerical analysis of the optimal control equations

As mentioned before, the equation (2.11) is solved by the CBE method in
Subsection 3.1 and the equation (2.12) is solved by the lowest order Crouzeix-
Raviart finite element method in Subsection 3.2.

Finally, we prove the convergence of (uh, ph) to the exact solution (u, p). It
is easy to see that the above iteration ends with one iteration.
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Theorem 4.1. Let (uh, ph) be the approximate solution by the above Gauss-

Seidel iteration, while (u, p) is the exact solution of (2.8)-(2.10). Then we have

the following convergence estimates:

‖u− uh‖1,h ≤ C(h‖fd‖0,Ω + (δh+
√
δh2)‖p‖0,Ω),

‖p− ph‖0,Ω ≤ C(h2 +
√
δh)(‖fd‖0,Ω + ‖p‖0,Ω),

where fd = −∇ · (a∇ud).

Proof. From (2.11)-(2.13), w and p = λ
δ
satisfy

−∇(a∇w) = fd,

−δ∇(a∇p) + p = fd

on Ω with boundary conditions, w = 0 and p = 0 on Γ. Analysis in Section 3
assert that wh and ph have the following convergence properties:

‖w − wh‖1,h ≤ Ch‖fd‖0,Ω,
‖p− ph‖δ,h ≤ C(h2 +

√
δh)(‖fd‖0,Ω + ‖p‖0,Ω).

Therefore,

‖p− ph‖0,h ≤ C(h2 +
√
δh)(‖fd‖0,Ω + ‖p‖0,Ω),

|p− ph|1,h ≤ C(h+
h2

√
δ
)(‖fd‖0,Ω + ‖p‖0,Ω).

Since λ = pδ,

|λ− λh|1,h ≤ C(δh+
√
δh2)(‖fd‖0,Ω + ‖p‖0,Ω).

Therefore,

‖u− uh‖1,h ≤ ‖w − wh‖1,h + ‖λ− λh‖1,h
≤ Ch‖fd‖0,Ω + C(δh+

√
δh2)(‖fd‖0,Ω + ‖p‖0,Ω)

≤ C(h‖fd‖0,Ω + (δh+
√
δh2)‖p‖0,Ω). �

5. Nonlinear problem

Let us consider a nonlinear problem: minimize the cost functional

(5.1) J (u, p) = Jud
(u) + δN(p)

subject to

(5.2) −∇ · (a∇u) + F(u) = p on Ω,

where F is a nonlinear operator. By following the same process in Section 2, we
obtain the strong form of optimality system: find (u, λ) ∈ [H1

a(div; Ω)∩H1
0 (Ω)]

2

such that

−∇ · (a∇u)−∇ · (a∇λ) + F ′(u)∗λ = fd,(5.3)

−∇ · (a∇u) + F(u)− λ

δ
= 0.(5.4)
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Here, F ′(u)∗ is the adjoint of F ′(u) and F ′ is the Frechet derivative of F .
Introducing a new variable w = u + λ, we obtain the computing friendly form
of equations:

−∇ · (a∇w) + F ′(u)∗λ = fd,

δ∇ · (a∇w) + {−δ∇ · (a∇λ) + λ} − δF(u) = 0,

−w + λ+ u = 0.

Then the Gauss-Seidel iteration can provide an efficient numerical algorithm
for the problem as follows:

−∇ · (a∇wn+1) = −F ′(un)∗λn + fd,(5.5)

−δ∇ · (a∇λn+1) + λn+1 = δ{−∇ · (a∇wn+1) + F(un)},(5.6)

un+1 = wn+1 − λn+1.(5.7)

Remark 5.1. Let us apply the Gauss-Seidel iteration directly to the system
(5.3) and (5.4) as follows:

−∇ · (a∇un+1)−∇ · (a∇λn) + F ′(un)∗λn = fd,

−∇ · (a∇un+1) + F(un+1)− λn+1

δ
= 0.

For simplification of our discussion, we assume F = 0. Simple calculation yields
that the sequence, {λn}∞n=0 satisfies

λn+1 = δ∇(a∇λn) + δfd.

Since the eigenvalues of the operator −δ∇(a∇·) is unbounded, convergence
may not happen unless the initial condition λ0 is properly chosen.

Table 1: Numerical results with Example 6.1: δ = 10−4

n ‖u− uh‖0 α |u− uh|1 α ‖p− ph‖0 α err(fluxD)
4 9.7728e-02 3.3098e-01 7.0505e-01 7.4093e-03
8 2.5181e-02 1.96 1.5689e-01 1.08 1.8643e-01 1.92 7.6618e-03

16 6.3434e-03 1.99 7.7309e-02 1.02 4.7258e-02 1.98 7.7162e-03
32 1.5890e-03 2.00 3.8532e-02 1.00 1.1852e-02 2.00 7.7660e-03

Table 2: Numerical results with Example 6.1: δ = 10−6

n ‖u− uh‖0 α |u− uh|1 α ‖p− ph‖0 α err(fluxD)
4 9.7973e-02 3.3211e-01 7.0603e-01 7.4971e-05
8 2.5244e-02 1.96 1.5742e-01 1.08 1.8670e-01 1.92 7.7931e-05

16 6.3589e-03 1.99 7.7513e-02 1.02 4.7339e-02 1.98 7.8676e-05
32 1.5927e-03 2.00 3.8603e-02 1.01 1.1876e-02 2.00 7.8843e-05

6. Numerical examples

The Gauss-Seidel iteration for the linear problem (1.1) and (1.2) involves
solving only two elliptic equations once. For the nonlinear problem (5.1) and
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Figure 1: The controlled solutions uh with the target solution ud (top) and ph
with the target solution pd (bottom).

(5.2) the Gauss-Seidel iteration requires for elliptic equations to be solved re-
peatedly and the algorithm (5.5)-(5.7) seems to provide a stable, fast converging
numerical scheme when δ is small, at least for numerical examples considered
in this section. Here, we provide both the linear and nonlinear examples.

Example 6.1. Let us consider a linear distributed optimal control problem:

(6.1) min
u∈H1

0
(Ω)

1

2

∫

Ω

|∇(u − ud)|2dx+
δ

2

∫

Ω

p2dx

subject to

(6.2) −∆u = p on Ω.

For the target function ud(x1, x2) = sin(πx1) sin(πx2), we can obtain the exact
solution by solving (2.8)-(2.10). The exact solution is

u(x1, x2) =
1

1 + 2δπ2
sin(πx1) sin(πx2),

p(x1, x2) =
2π2

1 + 2δπ2
sin(πx1) sin(πx2).
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The domain is the unit square and we consider a uniform triangulation of
Ω = (0, 1)× (0, 1), which consists of the right isosceles.

To investigate the flux approximation property of our algorithm, we consider
a subdomain D = (0, 1)× (0, 1/2) and the approximate flux as follows:

fluxD =

∫

∂D

(∇ud · ν)ds ≈
∫

∂D

(∇uh · ν)ds.

Note that this approximation is worth for a small 0 < δ << 1 and it can be a
measure of how our approximate solution matches the target function in sense
of total flux on a certain region when δ is small.

As shown in Tables 1-2, the convergence of uh in the energy norm is of order
O(h) as predicted in Theorem 4.1 and the convergence of ph is of orderO(h2) for

any δ > 0, which is better than that predicted in theory, O(h2 +
√
δh). Even

though our analysis does not mention on the L2 convergence we expect the
O(h2) convergence and it is shown in Tables. Tables 3-4 represents numerical
results for nonlinear problem (6.3). We observe desired numerical results. The
error in fluxD seems to be dependent only on δ. Indeed, Cδ is the bound of
the error in fluxD for some constant C > 0 since the error comes only from the
lowest order Crouzeix-Raviart finite element solver for the Lagrange multiplier
λ. Comparing the linear and nonlinear problems we have the same convergence
rates for u and p. Flux conservation property becomes a little worse because
of the existence of a nonlinear term, which can not be approximated in a flux
preserving manner.

Figure 1 represents numerical results obtained by changing control param-
eters for Example 6.1. It shows that the approximate solutions uh and ph
converge to the target solutions as the control parameter δ becomes smaller.

Example 6.2. Let us consider a nonlinear distributed optimal control problem:

(6.3) min
u∈H1

0
(Ω),f

1

2

∫

Ω

|∇(u− ud)|2dx+
δ

2

∫

Ω

p2dx

subject to

(6.4) −∆u+ 10u2 = p on Ω.

The target function is ud(x1, x2) = sin(πx1) sin(πx2). Since the exact solution
u is not known, we take uh and ph with h = 1/96 as the exact solutions.

Table 3: Numerical results for Example 6.2: δ = 10−4

n ‖u− uh‖0 α |u− uh|1 α ‖p− ph‖0 α err(fluxD)
4 9.7005e-02 4.4260e-01 2.4881e+00 1.3995e-02
8 2.4979e-02 1.96 2.1796e-01 1.02 6.7758e-01 1.88 1.4760e-02
16 6.2912e-03 1.99 1.0860e-01 1.01 1.7441e-01 1.96 1.4746e-02
32 1.3748e-03 2.19 5.4260e-02 1.00 4.5164e-02 1.95 1.4701e-02
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Table 4: Numerical results for Example 6.2: δ = 10−6

n ‖u− uh‖0 α |u− uh|1 α ‖p− ph‖0 α err(fluxD)
4 9.7965e-02 4.4575e-01 2.4431e+00 1.4129e-04
8 2.5241e-02 1.96 2.1942e-01 1.02 6.7969e-01 1.85 1.4932e-04
16 6.3579e-03 1.99 1.0921e-01 1.01 1.7601e-01 1.95 1.4915e-04
32 1.3898e-03 2.19 5.4504e-02 1.00 4.4924e-02 1.97 1.4802e-04
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