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Abstract. In this paper, some strong convergence theorems are obtained
for hybrid method for modified Ishikawa iteration process of asymptotically
nonexpansive mappings and asymptotically nonexpansive semigroups in
Hilbert spaces. The results presented in this article generalize and improve
results of Tae-Hwa Kim and Hong-Kun Xu and others. The convergence
rate of the iteration process presented in this article is faster than hybrid
method of Tae-Hwa Kim and Hong-Kun Xu and others.
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1. Introduction and Preliminaries

Let X be a real Banach space, C a nonempty closed convex subset of X, and
T : C → C a mapping. Recall that T is nonexpansive if ‖Tx−Ty‖ ≤ ‖x−y‖ for
all x, y ∈ C, and T is asymptotically nonexpansive [4] if there exists a sequence
{kn} ⊂ [1,+∞) of positive real numbers with limn→∞kn = 1 and such that
‖Tnx− Tny‖ ≤ kn‖x− y‖ for all integers n ≥ 1 and x, y ∈ C. A point x ∈ C is
a fixed point of T provided Tx = x. Denote by F (T ) the set of fixed points of
T , that is, F (T ) = {x ∈ C : Tx = x}.

Recall also that a one-parameter family = = {T (t) : t ≥ 0} of self-mappings
of a nonempty closed convex subset C of a Hilbert space H is said to be a (con-
tinuous) Lipschitzian semigroup on C(see,e.g.,[15]) if the following conditions
are satisfied:

(i) T (0)x = x, x ∈ C,
(ii) T (t+ s)x = T (t)T (s)x, t, s ≥ 0, x ∈ C,
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(iii) for each x ∈ C, the map t 7→ T (t)x is continuous on [0,∞),
(iv) there exists a bounded measurable function L(t) : (0,∞) → [0,∞) such

that, for each t > 0,

‖T (t)x− T (t)y‖ ≤ L(t)‖x− y‖, x, y ∈ C.

A Lipschitzian semigroup = is called nonexpansive if L(t) = 1 for all t > 0,
and asymptotically nonexpansive if lim supt→∞ L(t) ≤ 1, respectively. We use
F (=) to denote the common fixed point set of the semigroup =, that is F (=) =
{x ∈ C : T (s)x = x, ∀s > 0}. Note that for an asymptotically nonexpansive
semigroup =, we can always assume that the Lipschitzian constants L(t) are
such that L(t) ≥ 1 for all t > 0, L(t) is nonincreasing in t, and limt→∞L(t) = 1;

otherwise we replace L(t), for each t > 0, with L̃(t) := max{sups≥tL(s), 1}.
Construction of fixed points of nonexpansive mappings (and of common fixed

points of nonexpansive semigroups) is an important subject in the theory of
nonexpansive mappings and finds application in a number of applied areas, in
particular, in image recovery and signal processing (see,e.g.,[2,8,11,16,17]). How-
ever, the sequence {Tnx}∞n=0 of iterates of the mapping T at a point x ∈ C may
not converge even in the weak topology. Thus averaged iterations prevail. In-
deed, Mann’s iterations do have weak convergence. More precisely, a Mann’s
iteration procedure is a sequence {xn} which is generated in the following recur-
sive way:

xn+1 = αnxn + (1− αnTxn), n ≥ 0, (1.1)

where the initial guess x0 ∈ C is chosen arbitrarily. For example, Reich [9] proved
that if X is a uniformly convex Banach space with a Fréchet differentiable norm
and if {αn} is chosen such that

∑∞
n=1 αn(1− αn) = ∞, then the sequence {xn}

defined by (1.1) converges weakly to a fixed point of T . However we note that
Mann’s iterations have only weak convergence even in a Hilbert space [3].

Attempts to modify the Mann iteration method (1.1) so that strong conver-
gence is guaranteed have recently been made. Nakajo and Takahashi[7] proposed
the following modification of Mann iteration method (1.1) for a single nonex-
pansive mapping T in a Hilbert space H:





x0 ∈ C chosen arbitrarily,

yn = αnxn + (1− αn)Txn,

Cn = {z ∈ C : ‖yn − z‖ ≤ ‖xn − z‖},
Qn = {z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0},
xn+1 = PCn∩Qn(x0)

(1.2)

where PK denotes the metric projection from H onto a closed convex subset K
of H.

Nakajo and Takahashi[7] also propose the following iteration process for a
nonexpansive semigroup = = {T (s) : 0 ≤ s < ∞} in a Hilbert space H:
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x0 ∈ C chosen arbitrarily,

yn = αnxn + (1− αn)
1
tn

∫ tn
0

T (s)xnds,

Cn = {z ∈ C : ‖yn − z‖ ≤ ‖xn − z‖},
Qn = {z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0},
xn+1 = PCn∩Qn

(x0)

(1.3)

They proved that if the sequence {αn} is bounded above from one and if
{tn} is a positive real divergent sequence, then the sequence {xn} generated by
(1.2)(resp.(1.3)) converges strongly to PF (T )x0 (resp.PF (=)x0).

The adaptation of Mann’s iteration (1.1) to asymptotically nonexpansive
mappings T is given below

xn+1 = αnxn + (1− αn)T
nxn, n ≥ 0. (1.4)

Weak convergence of the sequence {xn} generated by (1.4) is proved by Schu
[10] (see also Tan and Xu [14]).

Attempts to modify the Mann iteration method (1.4) so that strong con-
vergence is guaranteed have recently been made In 2006,T.H.Kim and H.K.Xu
[18] proposed the following modification of the Mann iteration method (1.4) for
asymptotically non-expansive mapping in a Hilbert space H:





x0 ∈ C chosen arbitrarily,

yn = αnxn + (1− αn)T
nxn,

Cn = {z ∈ C : ‖yn − z‖2 ≤ ‖xn − z‖2 + θn},
Qn = {z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0},
xn+1 = PCn∩Qn(x0)

(1.5)

where θn = (1− αn)(k
2
n − 1)(diamC)2 → 0 as n → ∞.

They also proposed the following modification of the Mann iteration method
(1.4) for asymptotically nonexpansive semigroup in a Hilbert space H:





x0 ∈ C chosen arbitrarily,

yn = αnxn + (1− αn)
1
tn

∫ tn
0

T (s)xnds,

Cn = {z ∈ C : ‖yn − z‖2 ≤ ‖xn − z‖2 + θ̃n},
Qn = {z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0},
xn+1 = PCn∩Qn(x0)

(1.6)

where

θ̃n = (1− αn)[(
1

tn

∫ tn

0

L(u)du)2 − 1](diamC)2 → 0 as n → ∞.

It is purpose of this paper to generalized iteration process (1.5) and (1.6) to
Ishikawa type hybrid iteration processes for asymptotically nonexpansive map-
pings and asymptotically nonexpansive semigroups in a Hilbert space H:
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x0 ∈ C chosen arbitrarily,

yn = αnxn + (1− αn)T
nzn,

zn = βnxn + (1− βn)T
nxn,

Cn = {z ∈ C : ‖yn − z‖2 ≤ ‖xn − z‖2 + θn},
Dn = {z ∈ C : ‖zn − z‖2 ≤ ‖xn − z‖2 + φn},
Qn = {z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0},
xn+1 = PCn∩Dn

⋂
Qn

(x0)

(1.7)

where

θn = (1− αn)(βnk
2
n + (1− βn)k

4
n − 1)(diamC)2 → 0 as n → ∞.

φn = (1− βn)(k
2
n − 1)(diamC)2 → 0 as n → ∞.





x0 ∈ C chosen arbitrarily,

yn = αnxn + (1− αn)
1
tn

∫ tn
0

T (s)znds,

zn = βnxn + (1− βn)
1
tn

∫ tn
0

T (s)xnds,

Cn = {z ∈ C : ‖yn − z‖2 ≤ ‖xn − z‖2 + θ̃n},
Dn = {z ∈ C : ‖zn − z‖2 ≤ ‖xn − z‖2 + φ̃n},
Qn = {z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0},
xn+1 = PCn∩Dn

⋂
Qn

(x0)

(1.8)

where

θ̃n = (1−αn)[(
1

tn

∫ tn

0

L(u)du)2(βn+(1−βn)(
1

tn

∫ tn

0

L(u)du)2)−1](diam(C))2

φ̃n = (1− βn)[(
1

tn

∫ tn

0

L(u)du)2 − 1](diam(C))2

We shall prove that both iteration processes (1.7) and (1.8) converges strongly
to a fixed point of T and a common fixed point of = , respectively, provided the
sequence {αn} is bounded from above.

We will use the notation ⇀ for weak convergence and → for strong conver-
gence.

2. Convergence of asymptotically nonexpansive mappings

Before presenting the main result of this section, we include the following
lemma which is well known as the demiclosedness principle for saymptotically
nonexpansive mappings and which is a special case of [6,Theorem3.1].

Lemma 2.1. [6] Let T be an asymptotically nonexpansive mapping defined on
a bounded closed convex subset C of a Hilbert space H. Assume that {xn} is a
sequence in C with the properties (i) {xn} converges weakly to a point z, (ii)
Txn − xn converges strongly to 0, then z ∈ F (T ).
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Theorem 2.2. Let T be an asymptotically nonexpansive mapping defined on a
bounded closed convex subset C of a Hilbert space H. Assume that {αn}, {βn}
are sequences in [0,1] such that αn ≤ a, b ≤ βn for all n and for some a, b ∈
(0, 1). Define a sequence {xn} in C by (1.7). Then {xn} converges strongly to
PF (T )(x0).

Proof. By the result of K.Goebel and K.Kirk[4], we known that, F (T ) is nonempty.
Now observe that Cn is convex. Indeed, the defining inequality in Cn is equiva-
lent to the following inequality

〈2(xn − yn), z〉 ≤ ‖xn‖2 − ‖yn‖2 + θn

which is affine(and hence convex) in z.
Now, we show that F (T ) ⊂ Cn for all n. Indeed, for all p ∈ F (T ) we have

‖yn − p‖2 ≤ αn‖xn − p‖2 + (1− αn)k
2
n‖zn − p‖2. (2.1)

‖zn − p‖2 ≤ βn‖xn − p‖2 + (1− βn)k
2
n‖xn − p‖2. (2.2)

Substituting (2.2) into (2.1), we get

‖yn − p‖2 ≤ αn‖xn − p‖2 + (1− αn)k
2
n[βn + (1− βn)k

2
n]‖xn − p‖2

≤ ‖xn − p‖ − (1− αn)‖xn − p‖2 + (1− αn)k
2
n[βn + (1− βn)k

2
n]‖xn − p‖2

≤ ‖xn − p‖+ (1− αn)[k
2
n[βn + (1− βn)k

2
n]− 1]‖xn − p‖2

= ‖xn − p‖2 + (1− αn)(βnk
2
n + (1− βn)k

4
n − 1)‖xn − p‖2

≤ ‖xn − p‖2 + (1− αn)(βnk
2
n + (1− βn)k

4
n − 1)(diamC)2

≤ ‖xn − p‖2 + θn.

So p ∈ Cn for all n.
Now we prove that Dn is also convex and F (T ) ⊂ Dn for all n, indeed, the

defining inequality in Dn is equivalent to the following inequality

〈2(xn − zn), z〉 ≤ ‖xn‖2 − ‖zn‖2 + φn

which is affine(and hence convex) in z.
Now, we show that F (T ) ⊂ Dn for all n. Indeed, for all p ∈ F (T ) we have

‖zn − p‖2 ≤ βn‖xn − p‖2 + (1− βn)k
2
n‖xn − p‖2

≤ ‖xn − p‖2 + (1− βn)(k
2
n − 1)‖xn − p‖2

≤ ‖xn − p‖2 + (1− βn)(k
2
n − 1)(diamC)2

≤ ‖xn−p‖2+φn.

So p ∈ Dn for all n.
Next we show that F (T ) ⊂ Cn

⋂
Dn

⋂
Qn, for all n ≥ 0. It suffices to show

that F (T ) ⊂ Qn, for all n ≥ 0. We prove this by induction. For n = 0, we have
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F (T ) ⊂ Q0. Assume that F (T ) ⊂ Qn. Since xn+1 is the projection of x0 onto
Cn ∩Qn, we have

〈xn+1 − z, x0 − xn+1〉 ≥ 0, ∀z ∈ Qn ∩ Cn,

as F (T ) ⊂ Cn ∩ Qn, the last inequality holds, in particular, for all z ∈ F (T ).
This together with the definition of Qn+1 implies that F (T ) ⊂ Qn+1. Hence the
F (T ) ⊂ Cn

⋂
Qn holds for all n.

Next, we show that ‖xn+1 − xn‖ → 0, indeed , by the definition of Qn , we
have xn = PQn

(x0) which together with the fact that xn+1 ∈ Cn ∩ Qn implies
that

‖x0 − xn‖ ≤ ‖x0 − xn+1‖.
This shows that the sequence {‖xn−x0‖} is increasing, since C is bounded then
limn→∞ ‖xn − x0‖ exists. Noticing again that xn = PQn

(x0) and xn+1 ∈ Qn

which implies that 〈xn+1 − xn, xn − x0〉 ≥ 0, and noticing the identity

‖u− v‖2 = ‖u‖2 − ‖v‖2 − 2〈u− v, v〉, ∀u, v ∈ H.

we have

‖xn+1 − xn‖2 = ‖(xn+1 − x0)− (xn − x0)‖2

≤ ‖xn+1 − x0‖2 − ‖xn − x0‖2 − 2〈xn+1 − xn, xn − x0〉

≤ ‖xn+1 − x0‖2 − ‖xn − x0‖2 → 0, n → ∞.

We now prove ‖Txn − xn‖ → 0, we first prove ‖Tzn − xn‖ → 0, indeed,

‖Tnzn − xn‖ =
1

1− αn
‖yn − xn‖ ≤ 1

1− αn
(‖yn − xn+1‖+ ‖xn+1 − xn‖)

Since xn+1 ∈ Cn, then

‖yn − xn+1‖2 ≤ ‖xn − xn+1‖2 + θn.

Because θn → 0, and we have proved ‖xn+1−xn‖ → 0, so that ‖yn−xn+1‖ → 0,
therefore, which leads to

‖Tnzn − xn‖ → 0. (2.3)

On the other hand, we have

‖Tnxn − xn‖ ≤ ‖Tnxn − Tnzn‖+ ‖Tnzn − xn‖

≤ kn‖xn − zn‖+ ‖Tnzn − xn‖

= kn(1− βn)‖Tnxn − xn‖+ ‖Tnzn − xn‖.
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This result implies

‖Tnxn − xn‖ ≤ 1

1− kn(1− βn)
‖Tnzn − xn‖.

By using condition 0 < b ≤ βn and (2.3) we obtain that

‖Tnxn − xn‖ → 0, as n → ∞.

Putting k = sup{kn : n ≥ 1} < ∞, we deduce that

‖Txn − xn‖ ≤ ‖Txn − Tn+1xn‖+ ‖Tn+1xn+1 − Tn+1xn‖

+‖Tn+1xn+1 − xn+1‖+ ‖xn+1 − xn‖
≤ k‖xn − Tnxn‖+ ‖Tn+1xn+1 − xn+1‖+ (1 + k)‖xn+1 − xn‖ → 0.

We claim that {xn} converges strongly to PF (T )(x0), if not, then there ex-
ists a subsequence {xnk

} of {xn} and a real number ε > 0 such that ‖xnk
−

PF (T )(x0)‖ ≥ ε. Without loss generality, we can assume ‖xn − PF (T )(x0)‖ ≥ ε
for all n.

It is well-known that, there exists a subsequence {xni} of {xn} such that {xni}
converges weakly to a point x̃ ∈ C, by Lemma 2.1, x̃ ∈ F (T ). We now prove
x̃ = PF (T )(x0) and the convergence is strong. Put x′ = PF (T )(x0) and consider
the sequence {x0−xni}, then we have x0−xni ⇀ x0− x̃ and by the weak lower
semicontinuity of the norm and by the fact that ‖x0 − xn+1‖ ≤ ‖x0 − x′‖ for all
n ≥ 0 which is implied by the fact that xn+1 = PF (T )(x0), we have

‖x0 − x′‖ ≤ ‖x0 − x̃‖

≤ lim inf
i→∞

‖x0 − xni‖ ≤ lim sup
i→∞

‖x0 − xni‖

≤ ‖x0 − x′‖.
This implies ‖x0 − x′‖ = ‖x0 − x̃‖, by the uniqueness of the nearest point
projection of x0 onto PF (T )(x0) hence x̃ = x′ and

‖x0 − xni‖ → ‖x0 − x′‖, as i → ∞.

It follows that x0 − xni → x0 − x′, hence xni → x′. This is a contradiction with
assume ‖xn − x′‖ ≥ ε. This completes the proof. ¤

Remark The iteration process {xn+1} defined by (1.7) of this paper is the
projection of x0 into the subset Cn

⋂
Dn

⋂
Qn of C. It is obvious that, the

convergence rate of {xn+1} which converges in norm to PF (T )(x0) is faster than
the iteration process {xn+1} defined by (1.5) which is only the projection of x0

into the subset Cn

⋂
Qn of C.
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3. Strong convergence theorem of asymptotically nonexpansive
semigroups

Assume in this section that = = {T (t) : t ≥ 0} is an asymptotically nonex-
pansive semigroup defined on a nonempty closed convex bounded subset C of a
Hilbert space H. Recall that we use L(t) to denote the Lipschitzian constant of
the mapping T (t) and assume that L(t) is bounded and measurable so that the

integral
∫ t

0
L(s)ds exists for all t > 0. Recall also that L(t) ≥ 1 for all t > 0,

and L(t) is nonincreasing in t, and limt→∞ L(t) = 1. In the rest of this section,
we put L = sup{L(t) : 0 < t < ∞} < ∞. Recall furthermore that we use F (=)
to denote the common fixed point set of =. Note that the boundedness of C
implies that F (=) is nonempty.

In order to prove our strong convergence theorem, we first establish some
technical lemmas.

Lemma 3.1. Let C be a nonempty bounded closed convex subset of a Hilbert
space H and = = {T (t) : 0 ≤ t < ∞} be an asymptotically nonexpansive semi-
group on C. If {xn} is a sequence in C satisfying the properties

(i) xn ⇀ z;
(ii) lim supt→∞ lim supn→∞ ‖T (t)xn − xn‖ = 0,

where xn ⇀ z denote that {xn} converges weakly to z, then z ∈ F (=).

Proof. This lemma is the continuous version of Lemma 2.3 of Tan and Xu[12].
The proof given in [12] is easily extended to the continuous case. This complete
the proof. ¤

Lemma 3.2 [18]. Let C be a nonempty bounded closed convex subset of a
Hilbert space H and = = {T (t) : 0 ≤ t < ∞} be an asymptotically nonexpansive
semigroup on C. Then it holds that

lim sup
s→∞

lim sup
t→∞

sup
x∈C

‖1
t

∫ t

0

T (u)xdu− T (s)(
1

t

∫ t

0

T (u)xdu)‖ = 0

Now we present the strong convergence of an asymptotically nonexpansive
semigroup on C in a Hilbert space.
Theorem 3.3. Let = be an asymptotically nonexpansive semigroup defined on a
bounded closed convex subset C of a Hilbert space H. Assume that {αn}, {βn} are
sequences in [0,1] such that αn ≤ a, b ≤ βn for all n and for some a, b ∈ (0, 1).
Define a sequence {xn} in C by the algorithm (1.8). The {xn} converges strongly
to PF (=)(x0).

Proof. First observe that F (=) ⊂ Cn for all n ≥ 0. Indeed, we have for all
p ∈ F (=),

‖yn − p‖2 = ‖αnxn + (1− αn)
1

tn

∫ tn

0

T (u)zndu− p‖2
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≤ αn‖xn − p‖2 + (1− αn)‖ 1

tn

∫ tn

0

T (u)zndu− p‖2

≤ αn‖xn − p‖2 + (1− αn)(
1

tn

∫ tn

0

‖T (u)zn − p‖du)2

≤ αn‖xn − p‖2 + (1− αn)(
1

tn

∫ tn

0

L(u)du)2‖zn − p‖2. (3.1)

We have also for all p ∈ F (=),

‖zn − p‖2 ≤ βn‖xn − p‖2 + (1− βn)(
1

tn

∫ tn

0

L(u)du)2‖xn − p‖2 (3.2)

Substituting (3.2) into (3.1) we have that

‖yn − p‖2 ≤ αn‖xn − p‖2 +

(1− αn)(
1

tn

∫ tn

0

L(u)du)2(βn‖xn − p‖2 + (1− βn)(
1

tn

∫ tn

0

L(u)du)2‖xn − p‖2)

≤ ‖xn − p‖2 − (1− αn)‖xn − p‖2 +

(1− αn)(
1

tn

∫ tn

0

L(u)du)2(βn + (1− βn)(
1

tn

∫ tn

0

L(u)du)2)‖xn − p‖2

= ‖xn−p‖2+(1−αn)[(
1

tn

∫ tn

0

L(u)du)2(βn+(1−βn)(
1

tn

∫ tn

0

L(u)du)2)−1](diam(C))2

≤ ‖xn − p‖2 + θ̃n

So that p ∈ Cn for all n ≥ 0.

It from follows (3.2) that

‖zn − p‖2 ≤ ‖xn − p‖2 + (1− βn)[(
1

tn

∫ tn

0

L(u)du)2 − 1]‖xn − p‖2

≤ ‖xn − p‖2 + φ̃n.

So that p ∈ Dn for all n ≥ 0.
As in the proof of Theorem 2.2, {xn} is well defined and F (=) ⊂ Cn

⋂
Qn

for all n ≥ 0. Also, similar to the proof of Theorem 2.2, we can show that
‖xn+1 − xn‖ → 0 as n → ∞.

Since

‖ 1

tn

∫ tn

0

‖T (u)zndu− xn‖ =
1

1− αn
‖yn − xn‖
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≤ 1

1− a
(‖yn − xn+1‖+ ‖xn+1 − xn‖)

Note that the fact xn+1 ∈ Cn implies that

‖yn − xn+1‖2 ≤ ‖xn − xn+1‖2 + θ̃n

Thus, ‖xn − xn+1‖ → 0 implies ‖yn − xn+1‖ → 0, therefore, we have

‖ 1

tn

∫ tn

0

T (u)zndu− xn‖ → 0.

Because that

‖ 1

tn

∫ tn

0

T (u)xndu− xn‖

≤ ‖ 1

tn

∫ tn

0

T (u)xndu− 1

tn

∫ tn

0

T (u)zndu‖+ ‖ 1

tn

∫ tn

0

T (u)zndu− xn‖

≤ 1

tn

∫ tn

0

‖T (u)xn − T (u)zn‖du + ‖ 1

tn

∫ tn

0

T (u)zndu− xn‖

≤ (
1

tn

∫ t

0

L(u)du)‖xn − zn‖+ ‖ 1

tn

∫ tn

0

T (u)zndu− xn‖ (3.4)

Since

‖zn − xn‖ = (1− βn)‖ 1

tn

∫ tn

0

T (u)xndu− xn‖ (3.5)

Substituting (4.0) into (3.9) we have

‖ 1

tn

∫ tn

0

T (u)xndu− xn‖

≤ 1

1− ( 1
tn

∫ tn
0

L(u)du)(1− βn)
‖ 1

tn

∫ tn

0

T (u)zndu− xn‖

Because limu→∞ L(u) = 1, it is easy to see

lim
n→∞

1

tn

∫ tn

0

L(u)du = 1.

It follows from condition b < βn and above result that

‖ 1

tn

∫ tn

0

T (u)xndu− xn‖ → 0 (3.6)

Now, we consider that
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‖T (s)xn − xn‖ ≤ ‖T (s)xn − T (s)(
1

tn

∫ tn

0

T (u)xndu)‖

+‖T (s)( 1
tn

∫ tn

0

T (u)xndu)− 1

tn

∫ tn

0

T (u)xndu‖+ ‖ 1

tn

∫ tn

0

T (u)xndu− xn‖

(L+ 1)‖ 1

tn

∫ tn

0

T (u)xndu− xn‖

+‖T (s)( 1
tn

∫ tn

0

T (u)xndu)− 1

tn

∫ tn

0

T (u)xndu‖ (3.7)

Combining (3.6),(3.7) and by lemma3.3 we have that

lim sup
s→∞

lim sup
n→∞

‖T (s)xn − xn‖ = 0.

An application of Lemma 3.1 implies that every weak limit point of {xn} is a
member of F (=) . Repeating the last part of the proof of Theorem 2.2, we can
prove that PF (=)(x0) is the only weak limit point of {xn}, hence {xn} weakly
converges to PF (=)(x0), and that the convergence is moreover in the strong
topology. This completes the proof. ¤

Remark. The iteration process {xn+1} defined by (1.8) of this paper is the
projection of x0 into the subset Cn

⋂
Dn

⋂
Qn of C. It is obvious that, the

convergence rate of {xn+1} which converges in norm to PF (T )(x0) is faster than
the iteration process {xn+1} defined by (1.6) which is only the projection of x0

into the subset Cn

⋂
Qn of C.
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