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Abstract. Some computational fluid dynamics problems concerning the thin films flow

of viscous fluid with a free surface and draining or coating fluid-flow problems can be delin-

eated by third-order ordinary differential equations. In this paper, the aim is to introduce

the numerical solutions of the boundary value problems of such equations by variational

iteration method. In this paper, it is shown that the third-order boundary value prob-

lems can be written as a system of integral equations, which can be solved by using the

variational iteration method. These solutions are gleaned in terms of convergent series.

Numerical examples are given to depict the method and their convergence.

1. Introduction

The numerical solution of third-order boundary value problems (BVPs) is of
great importance due to its wide application in scientific research. The third-
order differential equations arise in many physical problems such as electromag-
netic waves, thin film flow, and gravity-driven flows [6, 11, 25, 26]. In this paper,
variational iteration method (VIM) is used to obtain a numerical solution to the
third-order boundary value problems associated with draining and coating flows of
the following form:

(1.1) y(3)(x) = f(x, y, y′, y′′)

with boundary conditions

y(a) = A1, y(1)(a) = A2, y(1)(b) = A3,

where Ai(i = 1, 2, 3) are finite real constants. Many researchers have attempted
for the numerical solutions of this type of boundary value problems to obtain high
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accuracy rapidly by using numerous method such as, finite difference method [19]
and also some other methods using polynomial and nonpolynomial spline functions
[23]. The above problem was solved by El-Danaf [10] using quartic nonpolynomial
spline functions. Al-Said and Noor [5, 20] demonstrated a second-order method
based on cubic and quartic polynomial spline functions respectively for the solution
of a system of third-order boundary value problems. Al-Said and Noor [4] have
generated a second-order finite difference scheme at midpoints. Khan and Aziz [18]
established and discussed convergent fourth-order method for this problem with the
change in the boundary conditions

y(a) = A1, y(1)(a) = A2, y(b) = A3

using quintic polynomial spline functions respectively. Caglar et al. [8] introduced
fourth-degree B-splines for solving third-order BVPs. All these techniques have their
inbuilt deficiencies. So we may reasonably infer that a large number of authors have
solved third-order BVPs using spline functions which can be exploited easily but
the numerical results converge slowly. Recently, Noor and Mohyud-Din [21] have
employed homotopy perturbation for solving higher-order boundary value problems.
He [12–15] developed the variational iteration method for solving nonlinear initial
and boundary value problems. It is worth mentioning that the method was first
considered by Inokuti et al. [17]. The main objective of this paper is to apply the
variational iteration method to solve a system of integral equations. This technique
provides a sequence of functions which converges to the exact solution of the prob-
lem. This technique solves the problem without any need to discretization of the
variables. Therefore, it is not affected by computation round off errors and one is
not faced with necessity of large computer memory and time. The idea outlined in
this paper can be applied to computational fluid dynamics (CFD) problems as well.
For example, the two dimensional steady state laminar viscous flow over a semi-
infinite flat plate is modeled by the nonlinear two-point boundary value Blasius
problem [7]

(1.2) f ′′′(x) =
1

2
f(x)f ′′(x), x ≥ 0,

with boundary conditions

f(0) = f ′(0) = 0,(1.3)

f ′(+∞) = 1.(1.4)

where a prime denotes differentiation with respect to x. Also, x and f(x) are,
respectively, the dimensionless coordinate and the dimensionless stream function.
In addition to the unknown function f , the solution of (1.3)-(1.4) is characterized
by the value of α = f ′′(0).The condition (1.4) can be replaced by the condition

(1.5) f ′(M) = 1.
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for some sufficiently large M , which must be determined as a part of solution. The
addition of the new unknown M to the problem warrants the asymptotic condition

(1.6) f ′′(M) = 0.

By using VIM method, it would be possible to obtain a solution of Blasius
equation in the form of a power series for small x. The two-dimensional flow of a
fluid near a stagnation point is a classical problem in fluid mechanics. VIM can also
be used to solve the two dimensional flow of fluid near a stagnation point named
Hiemenz flow [16]. The Navier-Stokes equations governing the flow can be reduced
to an ordinary differential equation of third order using similarity transformation.
Due to its wide range of applications in cooling of electronic devices by fans, cooling
of nuclear reactors during emergency shutdown, solar central receivers exposed to
wind currents, and many hydrodynamic processes in engineering application, the
flow near the stagnation-point has attracted the attention of many investigators for
more than a century. Another important advantage is that the method is capable
of greatly reducing the size of computational work while still maintaining high ac-
curacy of the numerical solution. More importantly, the VIM reduces the volume
of calculations by not requiring the Adomian polynomials [2], hence the iteration is
direct and straightforward. The method has been successfully implemented for solv-
ing various linear and nonlinear problems with approximations converging rapidly
to exact solutions [12–15]. This method is based on the use of Lagrange multi-
pliers for identification of optimal value of a parameter in a functional. Generally
finding the Lagrange multiplier is not easy for higher order differential equations.
Moreover, the use of Lagrange multiplier avoids the successive application of inte-
gral operator, reduces the huge computational work and can be considered as an
additional edge of this method over the decomposition method [2]. In this paper,
the variational iteration method is used for solving the third- order boundary value
problems. The boundary value problems are reformulated as a system of integral
equations by introducing a suitable transformation, so that the Lagrange multiplier
can be effectively identified. This equivalent system is useful in applying the varia-
tional iteration method. Therefore, this transformation [17] plays an important and
fundamental part in solving the boundary value problems. This clearly indicates
that the variational iteration technique may be considered as an alternative method
for solving linear and nonlinear problems.

2. Differential Equations Relevent to Draining and Coating Flows

Coating flows involve covering a surface with one or more thin layers of fluid.
They range from rain running down a window to manufacturing processes, such
as the production of videotapes. Difficulties in modelling coating flows arise for a
number of reasons. For example, operating conditions may require a running speed
which leads to instabilities, such as air entrainment and ribbing. Some draining
or coating fluid-flow problems, in which surface tension forces are important, can
be described by third-order ordinary differential equations. Tuck and Schwartz [26]



654 Jishan Ahmed

discussed a series of third-order ordinary differential equations (ODEs) arising in
the study of the flow of a thin film of viscous fluid over a solid surface. When such
a film drains down a vertical wall and the effects of surface tension and gravity as
well as viscosity are taken into account, one is led to an equation of the form

(2.1)
d3y

dx3
= f(y)

for the film profile y(x) in a coordinate frame moving with the fluid. For drainage
down a dry surface with the x− axis pointing downwards, this function become

f(y) = −1 + y−2.

If the surface is prewetted by a very thin film of thickness δ > 0, the function f
becomes

f(y) = −1 + (1 + δ + δ2)y−2 − (δ + δ2)y−3.

In [26] the authors formulate a series of well-posed mathematical problems arising
from the study of these draining flows.

Despite the seeming simplicity of equation (2.1), there are some fundamental
difficulties in its solution, because it becomes singular at the contact line, y = 0. The
genesis of this singularity is entirely physical and lies in the so-called contact line
paradox; the classical no-slip boundary condition being in direct conflict with the
requirement of contact line movement. Because of singularity, it is not possible to
move a contact line over a no-slip surface. To overcome this difficulty, the boundary
condition at an initial point can be modified as y(0) = ε where ε→ 0. To illustrate
this idea, consider the equation (2.1) with boundary conditions

(2.2) y(0) = 0, y′(0) = 0, lim
x→∞

y′(x) = 0.

where f(y) = −1 + y−2 arises in the study of draining and coating flows on a dry
surface. f(y) is singular at y(0) = 0 and we can modify boundary conditions (2.2)
as

(2.3) y(0) = ε, y′(0) = 0, lim
x→∞

y′′(x) = β.

In this case, it becomes convenient to apply the VIM for solving the equation (2.1)
with the modified boundary conditions (2.2). In this paper, we are concerned with
general third-order nonlinear boundary value problems, such problems arise in the
study of draining and coating flows.

3. Physical Descriptions of the Third-Order Differential Equations for
Draining and Coating Flows
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Fluid dynamic problems involving surface tension forces are described in general
by partial differential equations in space and time, with rather high, typically fourth-
order, spatial differentiations. For example, the thickness y of a thin film of viscous
fluid draining over a solid surface in an unsteady manner satisfies such an equation.
In some cases, as for example at the front edge of a large drop of fluid moving on a
plane surface, the flow can be treated as steady in a frame of reference moving with
the front. If, in addition, there is only one spatial coordinate of interest, namely,
that in the direction of motion along the plane, the problem has reduced to an
ordinary differential equation in that variable, say x. Further, the original fourth-
order system then permits one explicit integration, effectively due to conservation
of mass, and the result is an autonomous third-order ordinary differential equation
of the form (2.1) for some given function f(y). In [26] different possible choices of
the function f are given. We consider here some simple rational-function forms,
namely,

f(y) = −1 + y−2,(3.1)

f(y) = −1 + (1 + δ + δ2)y−2 − (δ + δ2)y−3,(3.2)

f(y) = y−2 − y−3,(3.3)

f(y) = y−2.(3.4)

Typically, Equation (3.1) is very important, and is relevant to fluid draining prob-
lems on a dry wall, involving the forces of viscosity, gravity and surface tension,
subject to a lubrication approximation. This equation is singular at y = 0, that
is, at the tip of the film. Equation (3.1) also occurs in different film flows, such
as spin coating and spray coating [11]. The equation (3.1) describes the thickness
y(x) of a layer of fluid that is draining down a vertical wall, the third-derivative
term representing surface tension effects, the constant term on the right represent-
ing gravity, and the term in y−2 the viscous shearing forces. The special draining
flow of interest is assumed steady in a frame of reference that is falling with the
layer; hence there is an apparent upward movement of the wall in this frame. Tuck
and Schwartz [26] used a boundary condition of the form

(3.5) y → 1 as x→ −∞.

Numerical solution of (3.1) subject to (3.5) is straight forward. If we choose any
starting point x = x0, then we could call upon VIM to solve this problem numeri-
cally.

Equation (3.2) is a generalization to a coating problem, or to draining over
a wet wall, that sidesteps these difficulties when δ is a small positive parameter
measuring wall wetness. Since y may now be expected to be bounded away from
zero, the singularity at y = 0 is no longer relevant. Equation (3.2) can be used to
describe draining over a wet wall, i.e. a case in which the draining layer is doubly
infinite, extending forever down the wall as well as forever up up it. Hence it is
appropriate to solve (3.2) subject to the boundary conditions

(3.6) y → 1 as x→ −∞



656 Jishan Ahmed

and

(3.7) y → δ as x→ +∞.

When the surface is dry, insight into the shape of the film close to the tip may be
obtained by studying the limit of solutions of equation (3.2) as δ → 0. In suitably
scaled coordinates this leads to equations involving the functions [26] (3.3) and (3.4).
In addition to the asymptotic context given above, equation (3.4) is interesting in
its own right in that it describes the spreading of certain oil drops on horizontal
surfaces [11]. Equation (3.3) is the so-called ”small limit” of (3.2), or inner expansion
of (3.2) valid for x ≈ x0, obtained by setting x = x0 + δX, y = δY, followed by the
formal limit δ → 0. Equation (3.4) describes the dynamic balance between surface
tension and viscous forces in a thin fluid layer in the absence (or neglect) of gravity.
Tanner [24] and Tuck and Schwartz [26] obtained accurate numerical solutions of
equation (3.4) that satisfy the conditions

(3.8) y(0) = 1, y
′
(0) = 0.

Tanner [24] conducted a series of experiments on the spreading of droplets of silicone
oil, from which he obtained a relationship between the speed of the three-phase
contact line and the maximum slope of the droplet, now usually referred to as
Tanner’s Law. Motivated by these experimental results, Tanner [24] solved equation
(3.4) numerically subject to the boundary conditions (3.8) for values of y

′′
(0) =

0. The VIM can easily be applied to solve the third-order ordinary differential
equations of the form (3.1) and (3.2) associated with draining and coating flows.

4. Variational Iteration Method

Consider the following differential equation

(4.1) Lu(x) +Nu(x) = f(x),

where L is a linear operator, N is a nonlinear operator and f(x) is a given continuous
function. The primary objective of this method is to derive a correction functional
for (4.1) in the following form [12–15]:

(4.2) un+1(x) = un(x) +

∫ x

0

λ(Lun(t) +Nũn(t)− f(t)) dt,

where λ is a Lagrange multiplier [12–15], which can be determined by imposing the
stationary conditions. The subscripts n denotes nth approximation, ũn is regarded
as a restricted variation i.e. δũn = 0. The solution of the linear problems can be
achieved with a very small number of iterations by the exact identification of the
Lagrange multiplier. The following system of differential equations will guide us in
understanding the variational iteration method:

(4.3) x′i = gi(t, xi), i = 1, 2, 3, . . . , n
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subject to the boundary conditions,

(4.4) xi(0) = ci, i = 1, 2, 3, . . . , n.

The system (4.3) can be rewritten as

(4.5) x′i(t) = gi(xi) + fi(t), i = 1, 2, 3, . . . , n

subject to the boundary conditions (4.4). The correct functional for the nonlinear
system (4.5) can be represented as

x
(k+1)
1 (t) = x

(0)
1 (t) +

∫ t

x0

λ1

(
x̃
′(k)
1 (T ), g1(x̃

(k)
1 (T ), x̃

(k)
2 (T ), . . . , x̃(k)n (T ))− f1(T )

)
dT,

x
(k+1)
2 (t) = x

(0)
2 (t) +

∫ t

x0

λ2

(
x̃
′(k)
2 (T ), g2(x̃

(k)
1 (T ), x̃

(k)
2 (T ), . . . , x̃(k)n (T ))− f2(T )

)
dT,

x
(k+1)
3 (t) = x

(0)
3 (t) +

∫ t

x0

λ3

(
x̃
′(k)
3 (T ), g3(x̃

(k)
1 (T ), x̃

(k)
2 (T ), . . . , x̃(k)n (T ))− f3(T )

)
dT,

...

x(k+1)
n (t) = x(0)n (t) +

∫ t

x0

λn

(
x̃
′(k)
1 (T ), g1(x̃

(k)
1 (T ), x̃

(k)
2 (T ), . . . , x̃(k)n (T ))− fn(T )

)
dT,

where λi = 1, i = 1, 2, 3, . . . , n are Lagrange multipliers, while x̃1, x̃2, . . . , x̃n define
the restricted variations. If we start with the initial approximations

xi(0) = ci, i = 1, 2, 3, . . . , n,

then the approximations can be completely determined; finally we approximate the
solution

xi(t) = lim
k→∞

x
(k)
i (t)

by the nth term x
(n)
i (t) for i = 1, 2, 3, . . . , n. To implement the method, third-order

boundary value problems are considered in the following section.

5. Numerical Results

The third-order boundary value problems in an infinite interval has been widely
used to describe the evolution of physical phenomena, for example some draining or
coating fluid-flow problems, see [6,11,25,26]. We refer the reader to [4,5,8,18,20,25]
for the study of the finite interval problems of third-order differential equations,
and to [6,11,25,26] for the study of the infinite interval problems. The third-order
boundary value problems in an infinite interval is a model for a viscous fluid drain-
ing over a wet surface for a thin film flowing on an inclined plane with an opening at
the bottom of the plane. In the study of draining and coating flows, the thin films



658 Jishan Ahmed

flowing on an inclined plane with an opening (a gap) at the bottom of the plane,
representing an outlet, can be modeled as a third-order ordinary differential equa-
tion. In the present paper, we have considered the problem of draining and coating
flows, which can be modeled as the third-order ordinary differential equation of the
type (1.1). We now give two numerical examples considered by El-Danaf [10] and
Srivastava et al. [23]. They solved a couple of problems associated with draining and
coating flows by using the nonpolynomial quartic spline and the polynomial quintic
spline, respectively. In this section, the variational iteration method is applied for
solving the third-order boundary value problems by converting the problems into a
system of integral equations. The variational iteration method is then applied to
the resultant system of integral equations. This procedure for solving third-order
boundary value problems in finite interval can be implemented in infinite interval
problems. For this reason, the third-order boundary value problems of the form
(1.1) are considered in this paper. The analytical solutions are taken from [10]. All
calculations are performed by MATHEMATICA 5.2.

Example 1. Consider the boundary value problem [10]:

(5.1) y(3) − xy = (x3 − 2x2 − 5x− 3)ex

subject to the boundary conditions

y(0) = 0, y(1)(0) = 1, y(1)(1) = −e.

The analytical solution of this problem is

(5.2) y(x) = x(1− x)ex.

Using the transformation, dy
dx = q(x), dq

dx = f(x), we can rewrite the third-order
boundary value problem as a system of first-order differential equations as follows:

dy

dx
= q(x),

dq

dx
= f(x),

df

dx
= xy + (x3 − 2x2 − 5x− 3)ex,

with y(0) = 0, q(0) = 1, f(0) = a. Using the VIM, we can rewrite the above
system of differential equations as a system of integral equations with Lagrange
multipliers λi = 1, i = 1, 2, 3, . . . , n,

yk+1(x) = 0 +

∫ x

0

q(k)(t) dt,

qk+1(x) = 1 +

∫ x

0

f (k)(t) dt,

fk+1(x) = a+

∫ x

0

(xf (k)(t) + (t3 − 2t2 − 5t− 3)et) dt,
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with y(0) = 0, q(0) = 1, f(0) = a. Consequently, the variational iteration
method obtains the following approximations:

y(1)(x) = x,

y(2)(x) = x+
ax2

2
,

y(3)(x) = 72− 72ex + 30x+ 43exx+ 4x2 +
ax2

2
− 11exx2 + exx3,

y(4)(x) = 72− 72ex + 30x+ 43exx+ 4x2 +
ax2

2
− 11exx2 + exx3 +

x5

60
,

y(5)(x) = 72− 72ex + 30x+ 43exx+ 4x2 +
ax2

2
− 11exx2 + exx3 +

x5

60
+
ax6

240
,

y(6)(x) = −1680 + 1680ex − 756x− 923exx− 120x2 +
ax2

2
+ 203exx2 − 22exx3

+ 3x4 + exx4 +
x5

2
+
x6

30
+
ax6

240
,

...

Thus, we get the resulting series solution as

y(x) = −997920 + 997920ex − 428400x− 569519exx− 65520x2 +
ax2

2

+ 136079exx2 − 17640exx3 + 1617x4 + 1323exx4 + 286x5 − 55exx5 +
45x6

2

+
ax6

240
+ exx6 − 5x8

24
− x9

40
− x10

720
+

ax10

172800
+

x12

147840
+

x13

1729728
+

x14

47174400

+
ax14

377395200
+

x17

211718707200
+

ax18

1847726899200
.

Imposing the boundary conditions at x = 1, we get a = −3.75223× 10−13.
Finally, the series solution can be written as

y(x) = −997920 + 997920ex − 428400x− 569519exx− 65520x2 + 136079exx2

− 17640exx3 + 1617x4 + 1323exx4 + 286x5 − 55exx5 +
45x6

2
+ exx6 − 5x8

24

− x9

40
− 0.00138889x10 +

x12

147840
+

x13

1729728
+ 2.11979× 10−8x14

+
x17

211718707200
− 2.03073× 10−25x18.

Table 1 shows the comparison between exact solution and the numerical solution
obtained using the proposed VIM. The maximum absolute error obtained by the
proposed method is compared with that of obtained by [1,3,9,10,18,23,27] in Table
2.
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Table 1: Absolute errors for the Example 1

x Analytical solution y(x) = x(1− x)ex VIM Error

0.0 0.0000000000000 0.0000000000000 0.00000000
0.1 0.0994653826268 0.0994653827630 1.362× 10−10

0.2 0.1954244413056 0.1954244413075 1.9× 10−12

0.3 0.2834703495909 0.2834703495898 1.1× 10−12

0.4 0.3580379274339 0.3580379274346 7.0× 10−12

0.5 0.4121803176750 0.4121803176650 1.0× 10−11

0.6 0.4373085120937 0.4373085120954 1.7× 10−12

0.7 0.4228880685688 0.4228880684808 8.80× 10−11

0.8 0.3560865485588 0.3560865486530 9.42× 10−11

0.9 0.2213642800041 0.2213642801409 1.368× 10−10

1.0 0.0000000000000 0.0000000000000 0.00000000

Table 2: Maximum absolute errors for Example 1

References Results

Khan et al. [18] 1.84× 10−6

Abdullah et al. [1] 8.12× 10−4

El-Salam et al. [9] 5.30× 10−7

Akram et al. [3] 8.29× 10−7

Zhiyuan et al. [27] 2.37× 10−7

Srivastava et al. [23] 2.64× 10−7

El-Danaf [10] 1.64× 10−2

Present study 1.37× 10−10
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Example 2. Consider the boundary value problem [10]:

(5.3) y(3) + y = (7− x2)cosx+ (x2 − 6x− 1)sinx

subject to the boundary conditions

y(0) = 0, y(1)(0) = −1, y(1)(1) = 2sin1.

The analytical solution of this problem is

y(x) = (x2 − 1)sinx.

Using the transformation, dy
dx = q(x), dq

dx = f(x), we can rewrite the third-order
boundary value problem as a system of first-order differential equations as follows:

dy

dx
= q(x),

dq

dx
= f(x),

df

dx
= −y + (7− x2)cosx+ (x2 − 6x− 1)sinx,

with y(0) = 0, q(0) = −1, f(0) = a. Using the VIM, we can rewrite the above
system of differential equations as a system of integral equations with Lagrange
multipliers λi = 1, i = 1, 2, 3, . . . , n,

yk+1(x) = 0 +

∫ x

0

q(k)(t) dt,

qk+1(x) = −1 +

∫ x

0

f (k)(t) dt,

fk+1(x) = a+

∫ x

0

(−f (k)(t) + ((7− t2)cost+ (t2 − 6t− 1)sint) dt,

with y(0) = 0, q(0) = −1, f(0) = a. Consequently, the variational iteration
method obtains the following approximations:

y(1)(x) = x,

y(2)(x) = −x+
ax2

2
,

y(3)(x) = 13− 3x2

2
+
ax2

2
− 13cosx+ x2cosx− sinx− 6xsinx+ x2sinx,

y(4)(x) = 13− 3x2

2
+
ax2

2
+
x4

24
− 13cosx+ x2cosx− sinx− 6xsinx+ x2sinx,

y(5)(x) = 13− 3x2

2
+
ax2

2
+
x4

24
− ax5

120
− 13cosx+ x2cosx− sinx− 6xsinx+ x2sinx,

y(6)(x) = 31x+
ax2

2
− 13x3

6
+
x5

40
− ax5

120
+ 12cosx− 44sinx+ 2x2sinx,

...
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Thus, we get the resulting series solution as

y(x) = −463 +
381x2

2
+
ax2

2
− 307x4

24
− ax5

120
+

241x6

720
− 61x8

13440
+

ax8

40320
+

19x10

518400

− ax11

39916800
− 13x12

68428800
+

19x14

29059430400
+

ax14

87178291200
− 31x16

20922789888000

− ax17

55687428096000
+

x18

492490285056000
− x20

810967336058880000

+
ax20

2432902008176640000
+

x22

1124000727777607680000
+ 463cosx− x2cosx

− sinx+ 42xsinx+ x2sinx.

Imposing the boundary conditions at x = 1, we obtain a = −2.81078× 10−22.
Finally, the series solution can be written as

y(x) = −463 +
381x2

2
− 307x4

24
+ 2.34232× 10−24x5 +

241x6

720
− 0.00453869x8

+
19x10

518400
+ 7.04159× 10−30x11 − 13x12

68428800
+ 6.53832× 10−10x14

− 31x16

20922789888000
+ 7.90238× 10−37x17 +

x18

492490285056000

− 1.2331× 10−18x20 +
x22

1124000727777607680000
+ 463cosx− x2cosx

− sinx+ 42xsinx+ x2sinx.

Table 3 shows the comparison between exact solution and the numerical solution
obtained using the proposed VIM. The maximum absolute error obtained by the
proposed method is compared with that of obtained by [1, 10,23] in Table 4.

6. Conclusion

In this paper, the variational iteration method has been successfully imple-
mented to get the numerical solutions of third-order BVPs associated with draining
and coating flows. The given problems have been converted into a system of first-
order differential equations, which leads to the system of integral equations. The
mehod provides analytical results to a rather wide class of nonlinear equations
without linearization, perturbation, or discretization, which can lead to complex
numerical computations. The numerical results obtained by the present method
are in good agreement with the exact solutions and is confirmation with great accu-
racy than the results obtained by the previous methods so far. The results obtained
here can easily be extended to third-order ordinary differential equations of the form
(2.1) modelling travelling waves on the free surface of a thin film flowing down a
vertical wall where the effects of gravity and surface tension have been included.
Hence, it is concluded that the method is easy to apply and can easily be applied
to boundary value problems associated with draining and coating flows.
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Table 3: Absolute errors for the Example 2

x Analytical solution y(x) = (x2 − 1)sinx VIM Error

0.0 0.00000000000 0.00000000000 0.00000000
0.1 -0.09883508248 -0.09883508248 3.03646× 10−14

0.2 -0.19072255756 -0.19072255756 2.14273× 10−14

0.3 -0.26892338806 -0.26892338806 3.21965× 10−14

0.4 -0.32711140754 -0.32711140754 2.33702× 10−14

0.5 -0.35956915395 -0.35956915395 2.57572× 10−14

0.6 -0.36137118297 -0.36137118297 2.24265× 10−14

0.7 -0.32855102049 -0.32855102049 2.40918× 10−14

0.8 -0.25824819272 -0.25824819272 9.2149× 10−15

0.9 -0.14883211282 -0.14883211282 3.18634× 10−14

1.0 0.000000000000 0.00000000000 0.00000000

Table 4: Maximum absolute errors for Example 2

References Results

Abdullah et al. [1] 8.5594× 10−5

Srivastava et al. [23] 2.1572× 10−8

El-Danaf [10] 8.8839× 10−3

Present study 3.21965× 10−14
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