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Adaptive lterative Depeckling of SAR Imagery
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Abstract : Lee (2007) suggested the Point-Jacobian iteration MAP estimation (PJIMAP) for noise
removal of the images that are corrupted by multiplicative speckle noise. It is to find a MAP estimation of
noisy-free imagery based on a Bayesian model using the lognormal distribution for image intensity and an
MREF for image texture. When the image intensity is logarithmically transformed, the speckle noise is
approximately Gaussian additive noise, and it tends to a normal probability much faster than the intensity
distribution. The MRF is incorporated into digital image analysis by viewing pixel types as states of
molecules in a lattice-like physical system. In this study, the MAP estimation is computed by the Point-
Jacobian iteration using adaptive parameters. At each iteration, the parameters related to the Bayesian
model are adaptively estimated using the updated information. The results of the proposed scheme were
compared to them of PJIMAP with SAR simulation data generated by the Monte Carlo method. The
experiments demonstrated an improvement in relaxing speckle noise and estimating noise-free intensity by
using the adaptive parameters for the Ponit-Jacobian iteration.

Key Words : SAR, Despeckling, Multiplicative Noise, Log-normal Distribution, MRF, MAP, Point-
Jacobian lteration, Adaptive Coefficients.

1. Introduction

Speckle noise due to wave coherence in Synthetic
Aperture Radar (SAR) imagery is supposed to be
dependent on the signal intensity in the sense that the
noise level increases with the brightness. A simple
statistical model of multiplicative noise (Dainty,
1984) has been often used for the speckle reduction.
Many adaptive filters have been developed to reduce
multiplicative noise in SAR images by taking local
statistics. The best-known filters include the Lee filter
(Lee, 1986), Frost filter (Frost et al., 1982), Kuan
filter (Kuan et al., 1985) and Gamma filter (Lopez et
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al., 1993). The Frost filter was designed as an
adaptive Wiener filter that assumed an autoregressive
exponential model for the scene reflectivity. Kuan
considered a multiplicative speckle model and
designed a linear filter based on the minimum mean-
square error criterion, optimal when both the scene
and the detected intensities are Gaussian distributed.
The Lee filter was a particular case of the Kuan filter
based on a linear approximation made for the
multiplicative noise model. The Gamma filter was
based on a Bayesian analysis of the image statistics
where both intensity and speckle noise follow a

Gamma distribution.
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Lee (2007) suggested an iterative approach for
despeckling the SAR images that are corrupted by
multiplicative speckle noise. It is a maximum a
posteriori (MAP) method using a Bayesian model
based on the lognormal distribution for image
intensity and a Markov random field (MRF) for
image texture. When the image intensity is
logarithmically transformed, the speckle noise
becomes approximately Gaussian additive noise and
it tends to a normal probability much faster than the
intensity distribution (Arsenault and April, 1976).
The MREF is incorporated into digital image analysis
by viewing pixel type s as states of molecules in a
lattice-like physical system defined on a Gibbs
random field (GRF) (Georgii, 1979). Because of the
MRF-GRF equivalence resulted from the
Hammersley-Clifford theorem (Kindermann and
Snell, 1982), the assignment of an energy function to
the physical system determines its Gibbs measure,
which is used to model molecular interactions. Thus,
this assignment also determines the MRF. The MAP
estimation of noisy-free imagery employs a Point-
Jacobian iteration (Varga, 1962). The Point-Jacobian
iteration MAP (PJIMAP) scheme was proved to yield
much better results than the conventional approaches
for the speckle reduction (Lee, 2007).

In this study, an adaptive scheme is proposed for
the MAP estimation of Point-Jacobian iteration.
Image processes are assumed to combine the random
fields associated with intensity and texture
respectively. The objective measure for determining
the optimal restoration of this double compound
stochastic image process is based on Bayes’ theorem.
The Bayesian model utilizes the parameters related to
smoothing and bonding strength between neighbors.
The smoothing parameter represents the relative
strength of prior belief of spatial smoothness
compared to observational information, and the

bonding strength is represented by nonnegative

coefficients associated with local texture model. In
the new adaptive approach, the parameters are
computed using the updated data at each iteration,
while the PJIMAP uses the parameters estimated with
the observation. The paper is organized as follows.
Section 2 contains a description of the Bayesian
model and the iterative MAP scheme, and the
parameter estimation are presented in Sections 3. The
experimental results of SAR simulation data
including comparison with those of the PJIMAP are
reported and discussed in Section 4. Finally, the

conclusions are stated in Section 5.

2. Point-Jacobian Iteration MAP
Estimation

A simple model of SAR imagery is usually given by
o= Vil k € 1 (H

where I, = {1, 2, ---, n} is the index set of pixels of the
image and {7);} are multiplicative noise following a
log-normal distribution. f Y = {yy=Inz, k € I}, X =
{xx=Invy, k € I}, and 0';% is a variance of In 7j, then

Y ~ N(X, ¥) where T = diagonal{c?, k € 1,,}.

Image processes are assumed to combine the
random fields associated with intensity and texture
respectively. The objective measure for determining
the optimal restoration of this double compound
stochastic image process is based on Bayes’ theorem.
Given an observed image Y, the Bayesian method is to
find an MAP estimate from the mode of the posterior
probability distribution of the noise-free vector X, or
equivalently, to maximize the log-likelihood function

IPN =In P(Y| X) + In P(X). Q)

The MREF is used to quantify the spatial interaction
probabilistically, that is, to provide a type of prior
information on the image texture. Due to the MRF-
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GRF equivalence (Kindermann and Snell, 1982), an
MREF is determined with a Gibbs measure. If R; is the
index set of neighbors of the ith pixel, R = {R; | i €
IL,} is a neighborhood system for 7,,. A “clique” of {1,
R}, c, is a subset of I, such that every pair of distinct
indices in ¢ represents pixels which are mutual
neighbors, and C denotes the set of all cliques. A
GREF relative to the graph {I,, R} on X is defined as

PO =Z7"exp {-E(X))

3)
EX) = Cgc V,(X) (enetgy function)

where Z is a normalizing constant and V. is a
potential function which has the property that it
depends only on X and c. Specification of C and V. is
sufficient to formulate a Gibbs measure for the local
texuture. A particular class of GRF, in which the
energy function is expressed in terms of non-
symmetric “pair-potentials,” is used in this study
(Kindermann and Snell, 1982). Here, the energy
function of the GRF is specified as a quadratic

function of X, which defines the probability structure

of the texture process:
EM=Y X a-x)° Q)
i€l (,j))eCp

where C, is the pair-clique system and @;; is a
nonnegative coefficient which represents the bonding
strength of the ith and the jth pixels.

The log-likelihood function of Eq. (2) using the log-
normal intensity model and the GRF texture model is:

IPN < «Y-X) L \(Y-X)-XBX )

where B = {3} is the bonding strength matrix where

O for (i, HeC,
Bi= >, oy fori=j.
LHEC,
0 otherwise

Since the log-likelihood function of Eq. (5) is convex,
the MAP estimate of X is obtained by taking the first

derivative:
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T r-x-BX=0. (6)

By solving Eq. (6) with the Point-Jacobian iteration
(Varga, 1962), the noise-free intensity can be
recovered iteratively (Lee, 2007): given an initial

estimate, %7, at the hth iteration for vi € I,

~h 1 2 ~h-1
=1 Aoy, - Y Bixr. N
l 6i2+,3ii[ o whee' ! }

The iteration converges to a unique solution since
y(MdﬁlBS) < 1 where y(+)denotes the spectral radius
(Cullen, 1972) and

M, = diagonal (63> + P kE 1}
B, = {b;= ;| bi=0}

3. Adaptive Bonding Strength
Coefficient Estimation

Various regions constituting an image can be
characterized by textural components. The bonding
strength coefficients of Eq. (4) are associated with
local interaction between neighboring pixels and can
provide some contextual information on the local
region. It is important to choose the coefficients
suitable for the analyzed image.

For the hth iteration, given the estimate of the
previous iteration, )2;,,1 = {&['L, k€L,), the posterior
probability of X can be stated:

AX Xy o (X1 -0 T X -X)-XBX. (8)

The MAP estimation of X is to find a mode of Eq.
(8), and can be then considered as an optimization

problem:

argmln Z Z aij(xi - xj')z
X i€l (i,j)ECp (9)

subject to o 2t - xpp <1, Vh €1,

where r is a given constant related to the distribution

of )2;1,1. The optimization of Eq. (9) can be rewritten as
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argmin
X

ich| GHEG

3Dy %(xrx,»>2+(o;2<£{“—x,»>2-r)”<10)

and the coefficient B, = ~@o; for i#j and B = ¢
can be estimated as in (Lee, 2007)

G- y
for G, HEC,

by=| X @H-3)?
(i, DEC,
0 otherwise
. pew il
fli= TN (1)
My
o Dpew@EE- Lyt
o =—
nW

S 1
(Di: %) a Al] ARl
6 X yEr-xlhy?
(i, kEC,

where W; is the index set of pixels belonging to the
window centered on the ith pixel and n,, is the pixel
number of W;. W; is a window defining the
neighborhood system associated with C,,. In Eq. (10),
{¢} and {r;;} can be considered as the smoothing
parameters of the relative strength of prior beliefs of
spatial smoothness and the normalized bonding
strength coefficients associated with a local texture
model respectively. It is natural that the closer the
pixels, the more the bonding strength between them.
Under this supposition, the normalized bonding
strength coefficient can be modified:

Ah71 AhIN
-3y

T i for (L HEC,
. LR g prly2 P
Gy= | o 22 H (12

0 otherwise

where 77;; is a proximity coefficient proportional to the
inverse of spatial distance between the ith and jth
pixels. If one of the neighbor pixels has a very close
value with the center pixel value compared to them of
the other neighbor pixels, the coefficient associated

with this neighbor pixel is very large relatively, and

the contextual information of neighborhood is then
dominated by this pixel, even if other neighbors have
right information. This problem can be alleviated by
giving a limitation on the quadratic distance of pixel

pair in Eq. (12):

ﬂ— for (i, €C
&= , g:e Cpmk&i? T 13
0 otherwise
where
5 = max{GF - 12, ks67) (1)

and ks is a predetermined constant.

4. Experiments

The results of the proposed adaptive iteration MAP
(AIMAP) approach were compared to them of
PJIMAP using simulation data generated by the
Monte Carlo method.

If the number of scattering points per resolution
cell is large in SAR, a fully developed speckle pattern
can be modeled as the magnitude of a complex
Gaussian field with independent and identically
distributed real and imaginary components
(Goodman, 1976). It leads to the Rayleigh
distribution as the amplitude distribution model. For
the experiment, 16-bit simulation SAR images with
the Rayleigh distribution were generated using 3
patterns. The pattern images and the distribution of
simulated noisy data used in this section are
illustrated in Fig. 1. In this section, the graph of data
distribution displays the frequency at intervals of 30.
Patterns A and B have 5 classes and Pattern C has 4
class. Table 1 shows the mean intensity level and the
number of pixels of each class.

For the Point-Jacobian iteration of Eq. (7), o? is

—458-



Table 1. Mean Intensity Level and Number of Pixels of Classes
of Simulation Patterns.

 Cliss Class - Number of Pixels
Mean | Pattern A | Pattern B | Pattern C
1 500 143136 | 232560 | 262144
2 1000 191772 190708 | 262144
3 1500 164200 | 236432 | 262144
4 2000 278140 | 184796 | 2062144
5 2500 271328 | 204080
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Fig. 1. Simulation image pattem and distribution of simulation data.

estimated using the observed intensities in the
neighbor-window as in Eq. (11) :
. Leew M

(4 Ty

_ Zke Wl.(Yk _/ji)z

Mo

(15)
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1

and the condition of convergence in Eq. (7) is defined as

ey -3 Ye,07
SELT T <k, f;:*’ (16)

n
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where k, << 1 is a given constant. In the experiments,
{{1;} were used for the initial estimates {z9} and k was
given with 0.01.

First the iteration MAP filters wete applied to the
simulation data of Pattern A using the neighborhood
windows of 4 different sizes, 3X3,5%5,7X7 and 9
% 9. This experiment used ks = 1.0 and 7 = 1.0. Table
2 contains the mean square errors of the despeckled
data to the original noisy-free data:

i i 1)?

MSEerror = - n 17

where %; and 1; are the despeckled and original noisy-
free values at the ith pixel respectively. Fig. 2 shows
the distributions of the despeckled data resulted from
PIIMAP and AIMAP. AIMARP yielded better results
than PJIMAP in data distribution. As shown in Fig. 2,
the despeckled data of PYIMAP using the windows of
smaller sizes did not fit well to the distribution of
original noisy-free data because the speckles of large
value still remain in the resultant images. PIIMAP
improved the speckle reduction in MSEeor and data
distribution when using larger window. AIMAP also
showed better performance in data distribution for
lager windows, but did not always generate the
despeckled data with smaller MSE,,,r. Fig. 3 shows
the despeckled images resulted from PJIMAP and
AIMAP using 9 X9 window. This figure indicates
that AIMAP can produce an image with much less
speckles. Next, AIMAP was applied to the simulation
data with different values of ks and r. The results

contains in Table 3 and Fig. 4. As shown in Tables 2

Table 2. MSEerrors of despeckled Images Resulted from
PJIMAP and AIMAP for Simulation Data of Pattern A.

Window Size PIIMAP AIMAP
3x3 345.22 178.59
5X5 229.61 163.44
Tx7 202.42 168.01
9x9 198.66 177.37
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Fig. 2. Distributions of despeckled data of PJIMAP (dots) and AIMAP for simulation

data of Pattem A.

Table 3. MSEzos of Despeckied Images Resuited from AIMAP
with Different Given Constants for Simulation Data of
Pattem A.

~ WindowSze | ks=0lr=
3x3 | 27664 178.34
5%5 19035 164.37
7x7 170.28 169.30
9%9 164.82 179.19

PIIMAP AIMAP

and 3, the value of r did not give an effect on the
performance, but the filter generated different result
for different ks. When using small value of ks, the
smaller the MSE,,,», the larger the window size, as in
the results of PTIMAP. Fig. 4 shows that the smaller

value of ks resulted in producing the image with

Fig. 3. Despeckled images of PJIMAP and AIMAP using 7 x 7
window (2nd row: enlarged images of sub area). worse fit in data distribution.
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Fig. 4. Distributions of despeckied data of AIMAP with ks = 0.1 and 1.0 (dots) using
windows of 3 x 3 and 9 x 8 for simulation data of Pattern A.
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Table 4. MSEqs of despeckled Images Resulted from
PJIMAP and AIMAP for Simulation Data of Pattem B.

PIIMAP AIMAP
32143 192.74
24143 209.94
241.98 238.00
267.96 269.69

AIMAP was applied to the simulation data of more
complex patterns. Table 4 contains the MSE,,,,,
results of PIIMAP and AIMAP using 4 different
window sizes with ks = 1.0, r = 1.0 for simulation
data of Pattern B. Fig. 5 displays the data distribution
of despeckled images resulted from PJIMAP and
AIMAP. The results of Table 4 and Fig. 5 indicate
that AIMAP performs better for the speckle reduction
than PJIMAP. When AIMAP was applied to the data
with k5 = 0.1 using 7 X 7 window, the MSE,,,,, of ks
= 0.1 is 193.44, while the error of ks = 1.0 is 238.00.
However, Fig. 6 shows that the larger value of ks
generated the despeckled data fitting a little better to
the data distribution. As shown in Table 4, AIMAP
produced smaller MSE,,,,s with smaller windows.
The experiments of different values of r showed that
the r values also have little effect on the results. It
may demonstrate that AIMAP of small k5 and
window is more proper for the data with Pattern B
contrary to the case of Pattern A. Fig. 7 illustrates the
despeckled images generated from AIMAP. It shows
that when using large window, AIMAP performs

80000
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Fig. 6. Distributions of despeckled data of AIMAP with k5= 0.1
and 1.0 (dots) using windows of 7 x 7 for simulation
data of Pattern B.

Original Noisy-free Image 3x3 window and k;= 1.0

9x9 window and &;= 1.0 7x7 window and k;= 0.1

Fig. 7. Despeckled images of sub-area resulted from AIMAP
for simulation data of Pattern B,

well in despeckling the data of inner area of large
regions, but it results in improper smoothing in the

boundary area of small regions. The 4th image
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Fig. 5. Distributions of despeckled data of PJIMAP (dots) and AIMAP using windows of
3x3 and 9 x 9 for simulation data of Pattern B.
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Fig. 8. Error images of despeckled data
resulted from AIMAP of 3x 3
(1st row) and 9 x 9 windows.

Table 5. MSEgqos of despeckled Images Resulted from
PJIMAP and AIMAP for Simulation Data of Pattem C.

(south-east corner) shows the effect of small k;,
which makes the filter estimate the noisy-free image
using more information of neighbors with similar
values. Fig. 8 displays the error images, {(%; - /li)z, i
€1,} of despeckled data generated from AIMAP.
This error images clearly shows that the large
window is better in the inner area and the small

window is better in the boundary area. Table 5 and

 Window Size PIIMAP AIMAP
3x%3 268.19 163.12
5x5- 210.00 194.43
Tx7 222.03 224.68 Fig. 10. Despeckled images of sub-area resulted from AIMAP
for simulation data of Pattern C with 4 different
9x9 25431 267.96 window sizes.
70000 60000
55 ]

60000
50000
40000
30000
20000 -‘

10000

50000

40000

30000

! \/ 20000
- Va N 10000

80000

’ 50000
40000
30000 -
20000

10000

0

80000

50000 "

40000

30000

20000

10000

Q

Fig. 9. Distributions of despeckled data of PJIMAP (dots) and AIMAP for simulation
data of Pattem C.
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Fig. 11. Error images of despeckled images of Fig. 10.

Figs. 9 - 11 contains the results of AIMAP for the
simulation data of Pattern C. These results also shows

the similar problem.

6. Conclusions

Lee (2007) proposed PJIMAP filter for
despeckling SAR imagery, which is an iterative
approach using a Bayesian model to find MAP
estimation of noise-free intensity. The algorithm is
established based on a multiplicative noise model
using a log-normal distribution and a texture model
using MRF. PIIMAP demonstrated the potentiality to
relax speckle noise and estimate noise-free intensity.
The Bayesian model based on double compound
stochastic image process utilizes the smoothing
parameter that represents the relative strength of prior
beliefs of spatial smoothness compared to
information on the observation and the bonding
strength coefficients associated with a local texture
model. The proposed approach adaptively estimates
the Bayesian parameters from the updated data at

each iteration, while the PJIMAP uses the parameters

Adaptive lterative Depedkling of SAR Imagery

estimated with the observation. The new scheme was
extensively evaluated using SAR simulation data by
comparing the results with them of PIIMAP. The
experimental results show an improvement in speckle
reduction by using the adaptive parameters for the
Ponit-Jacobian iteration. However, the new approach
still has a problem in determining a proper size of
window related to the neighborhood system of local
texture model. The use of large window results in
improper smoothing in the boundary area of small
regions. A larger window smoothes the image to
some extent and results in fading the detailed features

existed in the scene.
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