DOI QR코드

DOI QR Code

STRONG CONVERGENCE OF HYBRID METHOD FOR ASYMPTOTICALLY NONEXPANSIVE MAPPINGS AND SEMIGROUPS

  • Liu, Li (Department of Mathematics, Cangzhou Normal University) ;
  • Wang, Lijing (Department of Mathematics, Cangzhou Normal University) ;
  • Su, Yongfu (Department of Mathematics, Tianjin Polytechnic University)
  • Received : 2010.09.08
  • Accepted : 2010.10.13
  • Published : 2011.05.30

Abstract

In this paper, some strong convergence theorems are obtained for hybrid method for modified Ishikawa iteration process of asymptotically nonexpansive mappings and asymptotically nonexpansive semigroups in Hilbert spaces. The results presented in this article generalize and improve results of Tae-Hwa Kim and Hong-Kun Xu and others. The convergence rate of the iteration process presented in this article is faster than hybrid method of Tae-Hwa Kim and Hong-Kun Xu and others.

Keywords

References

  1. H.Brezis, F.E. Browder, Nonlinear ergodic theorems, Bull. Amer. Math. Soc. 82(1976)959- 961. https://doi.org/10.1090/S0002-9904-1976-14233-4
  2. C. Byme, A unified treatment of some iterative algorithms in signal processing and image reconstruction , Inverse Problems 20(2004),103-120. https://doi.org/10.1088/0266-5611/20/1/006
  3. A. Genel, J. Lindenstrass, An example concerning fixed points, Israel J. Math. 22(1975)81- 86. https://doi.org/10.1007/BF02757276
  4. K. Goebel, W.A. Kirk, A fixed point theorem for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc. 35(1972)171-174. https://doi.org/10.1090/S0002-9939-1972-0298500-3
  5. T.W. Kim, H.K. Xu, Strong convergence of modified Mann iterations, Nonlinear Anal. 61(2005)51-60. https://doi.org/10.1016/j.na.2004.11.011
  6. P.K. Lin, K.K. Tan, H.K. Xu,Demiclosedness principle and asymptotic behavior for asymptotically nonexpansive mappings, Nonlinear Anal. 24(1995)929-946. https://doi.org/10.1016/0362-546X(94)00128-5
  7. K. Nakajo, W. Takahashi, Strong convergence theorems for nonexpansive mappings and nonexpansive semigroups, J. Math. Anal. Appl. 279(2003)372-379. https://doi.org/10.1016/S0022-247X(02)00458-4
  8. C.I. Podilchuk, R.J. Mammone, Image recovery by convex projections using a least-squares constraint, J. Opt. Soc. Amer. A7(1990)517-521.
  9. S.Reich, Weak convergence theorems for nonexpansive mappings in Banach spaces, J. Math. Anal. Appl, 67(1979),274-276. https://doi.org/10.1016/0022-247X(79)90024-6
  10. J.Schu, Weak strong convergence to fixed points of asymptotically nonexpansive mappings, Bull. Austral. Math. Soc. 43(1991)153-159. https://doi.org/10.1017/S0004972700028884
  11. M.I. Sezan, H. Stark, Applications of convex projection theory to image recovery in to- mography and related areas, in: H.Stark (Ed), Image Recovery Theory and Applications, Academic Press, Orlando, 1987, pp. 415-462.
  12. K.K. Tan, H.K. Xu, The nonlinear ergodic theorem for asymptotically nonexpansive map- pings in Banach spaces, Proc. Amer. Math. Soc. 114(1992)399-404. https://doi.org/10.1090/S0002-9939-1992-1068133-2
  13. K.K. Tan, H.K. Xu,Fixed point theorems for Lipschitzian semigroups in Banach spaces, Nonlinear Anal. 20(1993)395-404. https://doi.org/10.1016/0362-546X(93)90144-H
  14. K.K. Tan, H.K. Xu, Fixed point iteration processes for asymptotically nonexpansive map- pings, Proc. Amer. Math. Soc. 122(1994)733-739. https://doi.org/10.1090/S0002-9939-1994-1203993-5
  15. H.K. Xu, Strong asymptotic behavior of almost-orbits of nonlinear semigroups, Nonlinear Anal. 46(2001)135-151. https://doi.org/10.1016/S0362-546X(99)00453-8
  16. D.Youla, Mathematical theory of image restoration by the method of convex projections,in: H.Stark (Ed), Image Recovery Theory and Applications, Academic Press, Orlando, 1987, pp. 29-77.
  17. D.Youla, On deterministic convergence of iterations of relaxed projection operators, J. Visual Comm. Image Representation 1(1990)12-20. https://doi.org/10.1016/1047-3203(90)90013-L
  18. Tae-Hwa Kim, Hong-Kun Xu, Strong convergence of modified Mann iterations for asymp- totically mappings and semigroups, Nonlinear Anal. 64(2006)1140-1152. https://doi.org/10.1016/j.na.2005.05.059