• Title/Summary/Keyword: Iteration

Search Result 1,885, Processing Time 0.028 seconds

PRECONDITIONED AOR ITERATIVE METHODS FOR SOLVING MULTI-LINEAR SYSTEMS WITH 𝓜-TENSOR

  • QI, MENG;SHAO, XINHUI
    • Journal of applied mathematics & informatics
    • /
    • v.39 no.3_4
    • /
    • pp.587-600
    • /
    • 2021
  • Some problems in engineering and science can be equivalently transformed into solving multi-linear systems. In this paper, we propose two preconditioned AOR iteration methods to solve multi-linear systems with -tensor. Based on these methods, the general conditions of preconditioners are given. We give the convergence theorem and comparison theorem of the two methods. The results of numerical examples show that methods we propose are more effective.

EFFICIENCY ANALYSIS OF A DOMAIN DECOMPOSITION METHOD FOR THE TWO-DIMENSIONAL TELEGRAPH EQUATIONS

  • Jun, Younbae
    • East Asian mathematical journal
    • /
    • v.37 no.3
    • /
    • pp.295-305
    • /
    • 2021
  • In this paper, we analyze the efficiency of a domain decomposition method for the two-dimensional telegraph equations. We formulate the theoretical spectral radius of the iteration matrix generated by the domain decomposition method, because the rate of convergence of an iterative algorithm depends on the spectral radius of the iteration matrix. The theoretical spectral radius is confirmed by the experimental one using MATLAB. Speedup and operation ratio of the domain decomposition method are also compared as the two measurements of the efficiency of the method. Numerical results support the high efficiency of the domain decomposition method.

CONVERGENCE THEOREMS OF PROXIMAL TYPE ALGORITHM FOR A CONVEX FUNCTION AND MULTIVALUED MAPPINGS IN HILBERT SPACES

  • Aggarwal, Sajan;Uddin, Izhar;Pakkaranang, Nuttapol;Wairojjana, Nopparat;Cholamjiak, Prasit
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.1
    • /
    • pp.1-11
    • /
    • 2021
  • In this paper we study the weak and strong convergence to minimizers of convex function of proximal point algorithm SP-iteration of three multivalued nonexpansive mappings in a Hilbert space.

CONVERGENCE THEOREMS FOR TWO NONLINEAR MAPPINGS IN CAT(0) SPACES

  • Sokhuma, Kritsana;Sokhuma, Kasinee
    • Nonlinear Functional Analysis and Applications
    • /
    • v.27 no.3
    • /
    • pp.499-512
    • /
    • 2022
  • In this paper, we construct an iteration scheme involving a hybrid pair of the Suzuki generalized nonexpansive single-valued and multi-valued mappings in a complete CAT(0) space. In process, we remove a restricted condition (called end-point condition) in Akkasriworn and Sokhuma's results [2] in Banach spaces and utilize the same to prove some convergence theorems. The results in this paper, are analogs of the results of Akkasriworn et al. [3] in Banach spaces.

APPROXIMATE PROJECTION ALGORITHMS FOR SOLVING EQUILIBRIUM AND MULTIVALUED VARIATIONAL INEQUALITY PROBLEMS IN HILBERT SPACE

  • Khoa, Nguyen Minh;Thang, Tran Van
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.4
    • /
    • pp.1019-1044
    • /
    • 2022
  • In this paper, we propose new algorithms for solving equilibrium and multivalued variational inequality problems in a real Hilbert space. The first algorithm for equilibrium problems uses only one approximate projection at each iteration to generate an iteration sequence converging strongly to a solution of the problem underlining the bifunction is pseudomonotone. On the basis of the proposed algorithm for the equilibrium problems, we introduce a new algorithm for solving multivalued variational inequality problems. Some fundamental experiments are given to illustrate our algorithms as well as to compare them with other algorithms.

Fixed point iterations for quasi-contractive maps in uniformly smooth banach spaces

  • Chidume, C.E.;Osilike, M.O.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.30 no.2
    • /
    • pp.201-212
    • /
    • 1993
  • It is our purpose in this paper to first establish an inequality in real uniformly smooth Banach spaces with modulus of smoothness of power type q > 1 that generalizes a well known Hilbert space inequality. Using our inequality, we shall then extend the above result of Qihou [15] on the Ishikawa iteration process from Hilbert spaces to these much more general Banach spaces. Furthermore, we shall prove that the Mann iteration process converges strongly to the unique fixed point of a quasi-contractive map in this general setting. No compactness assumption on K is required in our theorems.

  • PDF

AN EFFICIENT THIRD ORDER MANN-LIKE FIXED POINT SCHEME

  • Pravin, Singh;Virath, Singh;Shivani, Singh
    • Nonlinear Functional Analysis and Applications
    • /
    • v.27 no.4
    • /
    • pp.785-795
    • /
    • 2022
  • In this paper, we introduce a Mann-like three step iteration method and show that it can be used to approximate the fixed point of a weak contraction mapping. Furthermore, we prove that this scheme is equivalent to the Mann iterative scheme. A comparison is made with the other third order iterative methods. Results are presented in a table to support our conclusion.

The Three-step Intermixed Iteration for Two Finite Families of Nonlinear Mappings in a Hilbert Space

  • Suwannaut, Sarawut;Kangtunyakarn, Atid
    • Kyungpook Mathematical Journal
    • /
    • v.62 no.1
    • /
    • pp.69-88
    • /
    • 2022
  • In this work, the three-step intermixed iteration for two finite families of nonlinear mappings is introduced. We prove a strong convergence theorem for approximating a common fixed point of a strict pseudo-contraction and strictly pseudononspreading mapping in a Hilbert space. Some additional results are obtained. Finally, a numerical example in a space of real numbers is also given and illustrated.

CLASSES OF HIGHER ORDER CONVERGENT ITERATIVE METHODS FOR SOLVING NONLINEAR EQUATIONS

  • FAROOQ AHMED SHAH
    • Journal of Applied and Pure Mathematics
    • /
    • v.6 no.3_4
    • /
    • pp.177-189
    • /
    • 2024
  • In this paper, we suggest and analyze new higher order classes of iterative methods for solving nonlinear equations by using variational iteration technique. We present several examples to illustrate the efficiency of the proposed methods. Comparison with other similar methods is also given. New methods can be considered as an alternative of the existing methods. This technique can be used to suggest a wide class of new iterative methods for solving nonlinear equations.

Advances in solution of classical generalized eigenvalue problem

  • Chen, P.;Sun, S.L.;Zhao, Q.C.;Gong, Y.C.;Chen, Y.Q.;Yuan, M.W.
    • Interaction and multiscale mechanics
    • /
    • v.1 no.2
    • /
    • pp.211-230
    • /
    • 2008
  • Owing to the growing size of the eigenvalue problem and the growing number of eigenvalues desired, solution methods of iterative nature are becoming more popular than ever, which however suffer from low efficiency and lack of proper convergence criteria. In this paper, three efficient iterative eigenvalue algorithms are considered, i.e., subspace iteration method, iterative Ritz vector method and iterative Lanczos method based on the cell sparse fast solver and loop-unrolling. They are examined under the mode error criterion, i.e., the ratio of the out-of-balance nodal forces and the maximum elastic nodal point forces. Averagely speaking, the iterative Ritz vector method is the most efficient one among the three. Based on the mode error convergence criteria, the eigenvalue solvers are shown to be more stable than those based on eigenvalues only. Compared with ANSYS's subspace iteration and block Lanczos approaches, the subspace iteration presented here appears to be more efficient, while the Lanczos approach has roughly equal efficiency. The methods proposed are robust and efficient. Large size tests show that the improvement in terms of CPU time and storage is tremendous. Also reported is an aggressive shifting technique for the subspace iteration method, based on the mode error convergence criteria. A backward technique is introduced when the shift is not located in the right region. The efficiency of such a technique was demonstrated in the numerical tests.