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PRECONDITIONED AOR ITERATIVE METHODS FOR
SOLVING MULTI-LINEAR SYSTEMS WITH M-TENSOR†

MENG QI, XINHUI SHAO∗

Abstract. Some problems in engineering and science can be equivalently
transformed into solving multi-linear systems. In this paper, we propose
two preconditioned AOR iteration methods to solve multi-linear systems
with -tensor. Based on these methods, the general conditions of precon-
ditioners are given. We give the convergence theorem and comparison
theorem of the two methods. The results of numerical examples show that
methods we propose are more effective.
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1. Introduction

We consider the multi-linear system
Axm−1 = b, (1.1)

where A = (aii2···im) is an order m dimension n tensor, x and b are n dimensional
vectors. The tensor-vector product Axm−1 is defined by

(Axm−1)i =

n∑
i2,··· ,im=1

aii2···imxi2 · · ·xim , i = 1, 2, · · · , n. (1.2)

where x = (x1, x2, · · · , xn)T . There are some practical applications of the multi-
linear systems in engineering and science fields [1,2], for instance, numerical par-
tial differential equations [3], tensor complementarity problems [4], data mining
[5], tensor absolute value equations [6] and so on.
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Ding and Wei [3] proved the multi-linear system (1.1) always has a unique
positive solution if A is a strongM-tensor and b is a positive vector. In [12], the
authors gave the definition of tensor splitting A = E − F . The tensor splitting
method for solving the system (1.1) is defined by

xk = [M(E)−1Fxm−1
k−1 +M(E)b]

[ 1
m−1 ], k = 1, 2, · · · , n ,

According to this method, Li et al. [13] proposed preconditioned multi-linear
systems based on the preconditioned technique of linear systems. Cui et al. [14]
proposed a new preconditioner to solve the system (1.1).

Li, Liu and Vong [13] considered the preconditioner

Pα = I + Sα=


1 −α1a12···2 0 · · · 0
0 1 −α2a23···3 · · · 0
...

...
... . . . ...

0 0 0 · · · −αn−1an−1,n···n
0 0 0 · · · 1

 .
Cui, Li and Song [14] proposed a new preconditioner x

Pmax = (I + Smax),

where Smax is defined by

Smax = (smi,ki
) =

{
−ai,ki,···ki

, i = 1, · · ·n− 1 , ki > i,
0, otherwise,

where ki = min{j|maxj |aij,···j |, i < n, j > i}.
In this paper, A is a strongM-tensor and b > 0. Without loss of generality,

we assume that the all diagonal entries ofAare 1. The preconditioned multi-linear
system is PAxm−1 = Pb where P is a nonsingular and nonnegative matrix with
unit diagonal entries. Let Â = PA and b̂ = Pb.

2. AOR iterative method

2.1. Proposed method.

The order m dimension n unit tensor is denoted by Im. The majorization
matrix of tensor A is denoted by M(A) and M(A)ij = aij···j , i, j = 1, 2, · · · , n.
LetÂ = D̂ − L̂ − F̂ , whereD̂ = D̂Im, L̂ = L̂Im, D̂ and −L̂are the diagonal and
strictly lower triangular parts of M(Â), respectively. The matrix P is nonsin-
gular and nonnegative with unit diagonal entries. Then

Â = (âii2···im) =

n∑
k=1

pikaki2···im .

We define

M(A) = I − L− U,
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P = I + P1 + P2,

P1U = E1 + F1 +G1,

P2L = E2 + F2 +G2,

where E1 and E2 are diagonal matrixes, L, P1, F1 and F2 are strictly lower
triangular matrixes, U , P2, G1 and G2 are strictly upper triangular matrixes. It
is obvious that the matrices mentioned above are nonnegative.

D̂ = (I − E1 − E2)Im,

L̂ = (L− P1 + P1L+ F1 + F2)Im,

F̂ = (U − P2 + P2U +G1 +G2)Im + PF .
Hadjidimos [18] proposed an accelerated overrelaxation (AOR) iterative method

to solve linear systems. Based on this method, we propose the following AOR
iterative algorithm:

xk
[m−1] =

(
D̂ − rL̂

)−1

[(1− w) D̂+ (w − r) L̂+ wF̂ ]xm−1
k−1 + w

(
D̂ − rL̂

)−1

b̂,

k = 1, 2, · · · , n , where xk
[m−1] =

(
xm−1
1 , xm−1

2 , · · · , xm−1
n

)T , w and r are real
parameters with 0 ≤ r ≤ w ≤ 1 (w ̸= 0). The iteration tensor of AOR iterative
methods is

T̂r,w =
(
D̂ − rL̂

)−1

[(1− w) D̂+ (w − r) L̂+ wF̂ ].

2.2. Convergence analysis of the proposed method.

First, we give the following lemma to show that Â is a strongM-tensor.

Lemma 2.1. Let A be a strong M-tensor. If P = (pij) is a nonsingular and
nonnegative matrix with pii = 1 and

n∑
k=1

pikakj···j ≤ 0 1 ≤ i ̸= j ≤ n,

then Â = PA is a strong M-tensor.

Proof. When (i2, · · · , im) ̸= (j, · · · , j), since pij ≥ 0, we have
n∑

k=1

pikaki2···im ≤

0. Noticing that
n∑

k=1

pikakj···j ≤ 0 for 1 ≤ i ̸= j ≤ n, we obtain
n∑

k=1

pikaki2···im ≤

0 for (i, i2, · · · , im) ̸= (i, i, · · · , i). Consequently, Â is a Z-tensor.
According to the theorem 3 in [15], we assume that x ≥ 0 and Axm−1 > 0. It

is obvious that P ≥ 0, then we have PAxm−1 ≥ 0. Therefore, there exists x ≥ 0

such that PAxm−1 ≥ 0. By the theorem 3 in [15], Â is a strongM-tensor. �
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We give the splitting Â = M̂ − N̂ , where N̂ = 1
w [(1− w) D̂+ (w − r) L̂ +

wF̂ ]and M̂ = 1
w (D̂ − rL̂). By the definition and related theorems of tensor

splitting in [12], we have the follow theorem 2.2.

Theorem 2.2. Let A be a strong M-tensor. If P = (pij) is a nonsingular and
nonnegative matrix with pii = 1 and

n∑
k=1

pikakj···j ≤ 0, 1 ≤ i ̸= j ≤ n,

then Â = M̂ − N̂ is a convergent regular splitting for 0 ≤ r ≤ w ≤ 1 (w ̸= 0).

Proof. By lemma 2.1, Â is a strong M-tensor. It is obvious that F̂ ≥ O and
L̂ ≥ 0.Accordingly, N̂ = 1

w [(1− w) D̂+ (w − r) L̂ + wF̂ ] ≥ 0 for 0 ≤ r ≤ w ≤
1 (w ̸= 0).By the Neumann series, we have

M
(
M̂
)−1

= w
(
D̂ − rL̂

)−1

= w
(
I − rD̂−1L̂

)−1

D̂−1

= w

[
I + rD̂−1L̂+

(
rD̂−1L̂

)2
+
(
rD̂−1L̂

)3
+ · · ·+

(
rD̂−1L̂

)n−1
]
D̂−1.

By the theorem 3 [15] and proposition 4 [15], we get 0 <
n∑

k=1

pikaki···i ≤ 1, i.e.,

D̂−1 ≥ I. It is easy to know that M
(
M̂
)−1

≥ 0 and Â = M̂ − N̂ is a regular
splitting. By the lemma 3.16 in [12], Â = M̂ − N̂ is a convergent splitting. �

According to the theorem 5.4 [12] and lemma 2.1, Â is a strongM-tensor and
the AOR iterative method is convergent.

2.3. The comparison theorem.

Before the comparison theorem, we give the following lemma first.

Lemma 2.3. Let A be a strong M-tensor. Then there exists ε0 > 0 such that,
for any 0 < ε < ε0, A(ε) = (aii2···im(ε)) is also a strong M-tensor, where

aii2···im(ε) =

{
aii2···im , aii2···im ̸= 0,
−ε, aii2···im = 0.

Proof. Let A be a strong M-tensor, it is not hard to check that A(ε) is a Z-
tensor. By the theorem 3 in [15], there exists x ≥ 0 such that Axm−1 > 0.
Thus,

n∑
i2,··· ,im=1

aii2···imxi2 · · ·xim > 0i = 1, 2, · · · , n.
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Assuming that δ =
n∑

i2,··· ,im=1

xi2 · · ·xim > 0, let

ε0 =
1

δ
min


n∑

i2,··· ,im=1

aii2···imxi2 · · ·xim , i = 1, 2, · · · , n

 .

Then, we have ε0 > 0 and
n∑

i2,··· ,im=1

aii2···imxi2 · · ·xim − δε0 ≥ 0, i = 1, 2, · · · , n.

For any 0 < ε < ε0, we obtain
n∑

i2,··· ,im=1

aii2···im(ε)xi2 · · ·xim

>

n∑
i2,··· ,im=1

aii2···imxi2 · · ·xim − ε
n∑

i2,··· ,im=1

xi2 · · ·xim

≥
n∑

i2,··· ,im=1

aii2···imxi2 · · ·xim − δε0

≥ 0, i = 1, 2, · · ·n.

Thus A (ε)xm−1 > 0. By the theorem 3 in [15], we have A(ε) = (aii2···im(ε))
is also a strongM-tensor. �

Let A = Im − L − F , where L = LIm, −L is the strictly lower triangular
part of M(Â). We give the following splittings:

A =M−N =
1

w
(Im − rL)−

1

w
[(1− w) Im+ (w − r)L+ wF ],

Â = M̂ − N̂ =
1

w
(D̂ − rL̂)− 1

w
[(1− w) D̂+ (w − r) L̂+ wF̂ ].

The iteration tensor:

Tr,w =M(M)N = (I − rL)−1
[(1− w) Im+ (w − r)L+ wF ],

T̂r,w =M
(
M̂
)
N̂ =

(
D̂ − rL̂

)−1

[(1− w) D̂+ (w − r) L̂+ wF̂ ].
The comparison theorem of spectral radius between preconditioned AOR it-

erative method with and without preconditioner is given.

Theorem 2.4. Let A be an M-tensor. If P = (pij) is a nonsingular and
nonnegative matrix with pii = 1 and

n∑
k=1

pikakj···j ≤ 0, 1 ≤ i ̸= j ≤ n.
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we have T̂r,w ≤ Tr,w < 1 for 0 ≤ r ≤ w ≤ 1 (w ̸= 0).

Proof. Since A is aM-tensor, we can getN = 1
w [(1− w) Im+ (w − r)L+wF ] ≥

O. By Neumann series, we have M(M)
−1 ≥ 0. Thus, M(M)

−1N is a nonneg-
ative tensor. By theorem 2.2, M(M̂)

−1
N̂ is a nonnegative tensor. According to

theorem 1.3 in [22], there exists a nonnegative vector x ̸= 0 such that

M(M)
−1Nxm−1 = λx[m−1] and 0 ≤ ρ(Tr,w) = λ < 1,

or equivalently,

[(1− w)Im + (w − r)L+ wF ]xm−1 = λ(Im − rL)xm−1.

Then we obtain

Ax =M(M)(Im−M(M)
−1N )xm−1 = (1−λ)M(M)Imxm−1 = (1−λ)Mxm−1.

If λ > 0, we have w − r + rλ ̸= 0 and Lxm−1 = (−1+w+λ)Im−wF
w−r+rλ xm−1.

Hence,

M(M̂)
−1
N̂xm−1 − λx[m−1]

=M
(
D̂ − rL̂

)−1

[(1− w) D̂+ (w − r) L̂+ wF̂ − λ(D̂ − rL̂)]xm−1

=M
(
D̂ − rL̂

)−1

[(1− w − λ) D̂+ (w − r + rλ) L̂+ wF̂ ]xm−1

=M
(
D̂ − rL̂

)−1

[(1− λ) D̂+ (rλ− r) L̂ − wÂ]xm−1

=M
(
D̂ − rL̂

)−1

[(1− λ) D̂+r (λ− 1) L̂ − wPA]xm−1

=M
(
D̂ − rL̂

)−1

[(1− λ) D̂ − r (1− λ) L̂ − (1− λ)P (Im − rL)]xm−1

= (λ− 1)M
(
D̂ − rL̂

)−1

[−(I − E1 − E2)Im + r(L− P1 + P1L+

F1 + F2)Im+(I + P1 + P2)Im − r(L+ P1L+ P2L)Im]xm−1

= (λ− 1)M
(
D̂ − rL̂

)−1

[(E1 + E2 + r(F1 + F2) + (1− r)P1 + P2

− rP2L)Im]xm−1

= (λ− 1)M
(
D̂ − rL̂

)−1

[(E1 + E2 + r(F1 + F2) + (1− r)P1)Im

+ P2Im − rP2
(−1 + w + λ)Im − wF

w − r + rλ
]xm−1

= (λ− 1)M
(
D̂ − rL̂

)−1

[(E1 + E2 + r(F1 + F2) + (1− r)P1)Im

+ wP2
(1− r)Im + rF
w − r + rλ

]xm−1. (4.1)
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Case 1: A is irreducible. It is easy to get that
M(M)

−1N = (I − rL)−1
[(1− w)Im + (w − r)L+ wF ]

= [I + rL+ (rL)
2
+ · · ·+ (rL)

n−1
][(1− w)Im + (w − r)L+ wF ]

≥ (1− w)Im + (w − r)L+ wF + r(1− w)L
= (1− w)Im + w(1− r)L+ wF .

When 0 ≤ r < 1, since A is irreducible, M(M)
−1N is also irreducible. By

theorem 1.4 in [21], it is easy to know that λ > 0 and the Perron vector x > 0.
From (4.1), we obtain M(M̂)

−1
N̂xm−1 ≤ λx[m−1]. By lemma 3.2 in [13], we

have
ρ(T̂r,w) ≤ λ = ρ(Tr,w).

When r = w = 1,
ρ(T̂1,1) = lim

r→1−
ρ(T̂r,1) ≤ lim

r→1−
ρ(Tr,1) = ρ(T1,1) < 1.

Case 2: A is reducible. By the lemma 2.3, there exists a positive number ε such
that A(ε) is a irreducibleM-tensor. According to the proof above, we obtain

ρ(T̂r,w) = lim
ε→0

ρ(T̂r,w(ε)) ≤ lim
ε→0

ρ(Tr,w(ε)) = ρ(Tr,w) < 1.

Thus, ρ(M(M̂)
−1
N̂ ) ≤ ρ(M(M)

−1N ) < 1.The proof is completed. �

3. Modified AOR iterative method

We give the splitting Â = U − L, where

U =

{
âii2···im , i2, · · · , im ≥ i ,

0, otherwise.

We give the definition: Ai = (aii2···im)
n
i2,i3,··· ,im=1, then

Axm−1 =
(
A1x

m−1,A2x
m−1, · · · ,Anx

m−1
)T
,

i = 1, 2, · · · , n. Then we propose modified AOR iterative method as follows.
Algorithm 3.1:

(1) We give kmax as the maximum iteration steps and the precision ε as the termi-
nation conditions. Then we take a positive initial vector x0 = (x

(0)
1 , x

(0)
2 , · · ·x(0)n )

T

and let k = 1;
(2) While k ≤ kmax;
(3)aii···i

[
x
(k)
i

]m−1

= aii···i

[
x
(k−1)
i

]m−1

+rLi

(
xm−1
k,i−1 − xm−1

k−1

)
+w

(
b̂i − Âix

m−1
k−1

)
,

i = 1, 2, · · · , n, k = 1, 2, · · · , where xk,i = (x
(k)
1 , · · ·x(k)i , x

(k−1)
i+1 , · · ·x(k−1)

n )
T
,

xk, 0=xk−1, xk, n=xk;
(4) If

∥∥Axm−1
k − b

∥∥
2
< ε,break and output xk;

(5) k = k + 1and back to step (2). Before giving the convergence theorem, we
give following two lemmas.
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Lemma 3.1. Let A be a strong M-tensor. If 0 < r ≤ w ≤ 1 (w ̸= 0), under the
conditions of lemma 2.1, the vector sequence {xk} generated by the algorithm
3.1 is increasing for any positive initial vector x0 > 0 with 0 < Axm−1

0 ≤ b.

Proof. By lemma 2.1, Â is a strong M-tensor. Assuming that xk−1 > 0 and
Âxm−1

k−1 ≤ b̂, when i = 1, it is obvious that

a11···1

[
x
(k)
1

]m−1

= a11···1

[
x
(k−1)
1

]m−1

+ rL1

(
xm−1
k,0 − xm−1

k−1

)
+ w

(
b̂1 − Â1x

m−1
k−1

)
= a11···1

[
x
(k−1)
1

]m−1

+ w
(
b̂1 − Â1x

m−1
k−1

)
≥ aii···i

[
x
(k−1)
1

]m−1

.

When i = j, assuming that
[
x
(k−1)
t

]m−1

≤
[
x
(k)
t

]m−1

, t = 1, 2, · · · , j.
When i = j + 1, it is obvious that xk,j ≥ xk,0 = xk−1. We have

aj+1,j+1,··· ,j+1

[
x
(k)
j+1

]m−1

= aj+1,j+1,··· ,j+1

[
x
(k−1)
j+1

]m−1

+ rLj+1

(
xm−1
k,j − xm−1

k−1

)
+ w

[
bj+1 −Aj+1x

m−1
k−1

]
≥ aj+1,j+1,··· ,j+1

[
x
(k−1)
j+1

]m−1

+ w
[
bj+1 −Aj+1x

m−1
k−1

]
≥ aj+1,j+1,··· ,j+1

[
x
(k-1)
j+1

]m−1

.

Therefore,
[
x
(k−1)
i

]m−1

≤
[
x
(k)
i

]m−1

for i = 1, 2, · · · , n, we obtain xk ≥ xk−1.
Noticing that 0 < r ≤ w ≤ 1, then

aii···i

[
x
(k)
i

]m−1

= aii···i

[
x
(k−1)
i

]m−1

+ rLi

(
xm−1
k,i−1 − xm−1

k−1

)
+ w

[
b̂i − Âix

m−1
k−1

]
≤ aii···i

[
x
(k−1)
i

]m−1

+ Li

(
xm−1
k,i−1 − xm−1

k−1

)
+
[
b̂i − Âix

m−1
k−1

]
= aii···i

[
x
(k−1)
i

]m−1

+ Lix
m−1
k,i−1 + b̂i − U ix

m−1
k−1

≤ aii···i
[
x
(k)
i

]m−1

+ Lix
m−1
k + b̂i − U ix

m−1
k

≤ aii···i
[
x
(k)
i

]m−1

+
[
b̂i − Âix

m−1
k

]
.

we get Âxm−1
k ≤ b. Since P > 0 and 0 < Axm−1

0 ≤ b, it is easy to
know Âxm−1

0 ≤ b̂. By the mathematical induction, we have x
[m−1]
k ≥ x

[m−1]
k−1

(k = 1, 2, · · · ) . The vector sequence {xk} is increasing. �
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Lemma 3.2. Let A be a strong M-tensor. If 0 ≤ r ≤ w ≤ 1 (w ̸= 0), under the
conditions of lemma 2.1, the vector sequence {xk} generated by the algorithm
3.1 is bounded above for any positive initial vector x0 > 0 with 0 < Axm−1

0 ≤ b.

Proof. By lemma 2.1, Â is a strong M-tensor. Let Â = D̂ − B̂, where B̂ is a
nonnegative tensor and D̂ = D̂Im. Since 0 < Axm−1

0 ≤ b, it is easy to know
0 ≤ Âxm−1

0 ≤ b̂. Let{
B̂xm−1

0 ≤ αD̂xm−1
0 , 0 < α < 1,

b̂ ≤ βD̂xm−1
0 .

It is easy to know B̂xm−1
0 + b ≤ (α+ β) D̂xm−1

0 . By lemma 2.4, we can get
xk > 0 and Âxm−1

k ≤ b̂ for k = 1, 2, · · · . Therefore,

aii···i

[
x
(k)
i

]m−1

= D̂ix
m−1
k ≤ B̂ixm−1

k + bi.

We assume that x[m−1]
k−1 ≤

(
α(k−1)n + α(k−1)n−1β+ · · ·+αβ + β

)
x
[m−1]
0 , k > 1.

For the k-step iteration: when i = 1, we have

a11···1

[
x
(k)
1

]m−1

= a11···1

[
x
(k−1)
1

]m−1

+ rL1

(
xm−1
k,0 − xm−1

k−1

)
+ w

(
b̂1 − Â1x

m−1
k−1

)
≤ D̂1x

m−1
k−1 +

(
b̂1 − Â1x

m−1
k−1

)
≤ B̂1xm−1

k−1 + b1

≤
(
α(k−1)n + α(k−1)n−1β+ · · ·+αβ + β

)
B̂1xm−1

0 + b̂1

≤
(
α(k−1)n+1 + α(k−1)nβ+ · · ·+αβ + β

)
a11···1

[
x
(0)
1

]m−1

.

we obtain x(k)1 ≤ m−1

√(
α(k−1)n+1 + α(k−1)nβ+ · · ·+αβ + β

)
x
(0)
1 .

When i = j, assuming that x(k)t ≤ m−1

√(
α(k−1)n+t + α(k−1)n+t−1β+ · · ·+β

)
x
(0)
t ,

t = 1, 2, · · · , j.
When i = j + 1, we have

aj+1,··· ,j+1

[
x
(k)
j+1

]m−1

= aj+1,··· ,j+1

[
x
(k−1)
j+1

]m−1

+ rLj+1

(
xm−1
k,j − xm−1

k−1

)
+ w

[
b̂j+1 − Âj+1x

m−1
k−1

]
≤ D̂j+1x

m−1
k−1 +

(
b̂j+1 − Â 1x

m−1
k,j

)
= B̂j+1x

m−1
k,j + b̂j+1

≤
(
α(k−1)n + α(k−1)n−1β+ · · ·+αβ + β

)
B̂j+1x

m−1
0 + b̂j+1

≤
(
α(k−1)n+1 + α(k−1)nβ+ · · ·+αβ + β

)
aj+1,··· ,j+1

[
x
(0)
j+1

]m−1

.

We obtain x(k)j+1 ≤
m−1
√
α(k−1)n+j+1 + α(k−1)n+jβ+ · · ·+αβ + βx

(0)
j+1.
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According to the initial conditions, we can get

x
[m−1]
1 ≤

(
αn + αn−1β+ · · ·+αβ + β

)
x
[m−1]
0 .

by calculating. By the mathematical induction, we have

x
[m−1]
k ≤

(
αkn + αkn−1β+ · · ·+αβ + β

)
x
[m−1]
0 ,

for k = 1, 2, · · · . Let k → ∞, then lim
k→∞

(
αkn + αkn−1β+ · · ·+αβ + β

)
= β

1−α .

Therefore, the vector sequence {xk} is bounded above. �

According to the two lemmas, we have the following convergence theorem.

Theorem 3.3. Let A be a strong M-tensor. If 0 ≤ r ≤ w ≤ 1 (w ̸= 0), under
the conditions of lemma 2.1, then the vector sequence {xk} generated by the
algorithm 3.1 converges to the only positive limit for any positive initial vector
x0 > 0 with 0 < Axm−1

0 ≤ b.

Proof. By the lemma 3.1 and lemma 3.2, the vector sequence {xk} is increasing
and bounded above. Consequently, {xk} converges to the only positive limit. �

4. Numerical examples

All numerical examples will be done in MATLAB R2018b on a personal com-
puter with Intel(R) Core (TM) i5-7300HQ CPU @2.50GHz and 8.00GB RAM.
In the section, “IT” and “CPU” denote the number of iteration steps and the
CPU time, respectively. In the numerical examples, we set the maximum num-
ber of iterative steps to 1000 and the precision to 10-11. w is from 0.1 to 2 and
the interval is 0.1, then (w, r)opt denotes the optimal parameters of AOR and
modified AOR method. Considering the following preconditioner:

P = I + Uβ=


1 −β1a12···2 −β1a13···3 · · · −β1a1n···n
0 1 −β2a23···3 · · · −β2a2n···n
...

...
... . . . ...

0 0 0 · · · −βn−1an−1,n···n
0 0 0 · · · 1

 .

Just for convenience, let β1 = β2 = · · · = βn−1 = β.
Example 1. Let B ∈ R[3,n] be a nonnegative tensor with bi1i2i3 = |sin(i1 + i2 + i3)|.

By [7], A = n2Im − B is a strongM-tensor.
Let b = 1 and initial vector x0 = 0. We take the parameters β from 0 to 4

and the interval is 0.3. The numerical results are shown in table 1.
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Table 1. Numerical results of Example 1

PAOR modified PAOR
β IT CPU (w, r)opt IT CPU (w, r)opt
0 27 2.055e-04 (1.4 , 1.4) 15 1.379e-04 (1.5 , 1.4)
0.3 26 1.422e-04 (1.4 , 1.3) 15 1.253e-04 (1.5 , 1.4)
0.6 23 1.226e-04 (1.5 , 1.5) 15 1.248e-04 (1.5 , 1.4)
0.9 23 1.153e-04 (1.4 , 1.4) 15 1.187e-04 (1.5 , 1.4)
1.2 22 1.113e-04 (1.4 , 1.3) 14 9.230e-05 (1.5 , 1.4)
1.5 21 1.132e-04 (1.4 , 1.3) 14 9.430e-05 (1.5 , 1.4)
1.8 20 1.131e-04 (1.4 , 1.2) 13 8.840e-05 (1.5 , 1.4)
2.1 18 9.450e-05 (1.4 , 1.4) 13 8.820e-05 (1.5 , 1.4)
2.4 17 9.140e-05 (1.4 , 1.3) 12 7.980e-05 (1.5 , 1.4)
2.7 16 8.090e-05 (1.4 , 1.4) 12 8.020e-05 (1.3 , 1.2)
3.0 16 7.540e-05 (1.4 , 1.4) 12 7.910e-05 (1.3 , 1.2)
3.3 16 8.990e-05 (1.3 , 1.3) 11 7.130e-05 (1.3 , 1.2)
3.6 15 1.343e-04 (1.3 , 1.3) 11 7.360e-05 (1.3 , 1.2)
3.9 16 8.540e-05 (1.3 , 1.2) 11 7.380e-05 (1.3 , 1.2)

Example 2 [24]. Let A ∈ R[3,n] and b ∈ Rn with:

a111 = (2 + n) /2,
annn = 1,
aiii = 2, i = 2, 3, · · · , n− 1,
a1ii = −1/2, i = 2, 3, · · · , n− 1,
aiii−1 = −1/2, i = 2, 3, · · · , n− 1,
aii−1i−1 = −1/2, i = 2, 3, · · · , n− 1,
aii+1i+1 = −1/2, i = 2, 3, · · · , n− 1.

and 
b1 = c20,

bi = a/(n− 1)
2
, i = 2, 3, · · · , n− 1,

bn = c21.

Let initial vector x0 = (1, 1, · · · , 1)T , c0 = 1/2, c1 = 1/3 and a = 2. When
n=10, we take the parameters β from 0 to 2 and the interval is 0.2. The numer-
ical results are shown in table 2.

It is well known that we can get the Jacobi, the Gauss-Seidel and the suc-
cessive overrelaxation (SOR) iteration methods by choosing certain values. The
results of two numerical examples show that the AOR method is more effective
than the GS and SOR method when we take the optimal parameter (w, r). We
compare AOR with modified AOR iteration method in example 1 and example
2. It can be seen from Table 1 and table 2 that modified AOR iteration method
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requires less iterative steps and CPU time.

Table 2. Numerical results of Example 2

PAOR modified PAOR
β IT CPU (w, r)opt IT CPU (w, r)opt
0 45 0.0034 (1.2 , 1.2) 24 0.0011 (1.3 , 1.2)
0.2 41 0.0404 (1.4 , 1.4) 22 0.0008 (1.3 , 1.2)
0.4 37 0.0365 (1.4 , 1.4) 21 0.0007 (1.3 , 1.0)
0.6 32 0.0303 (1.4 , 1.4) 21 0.0007 (1.3 , 1.0)
0.8 29 0.0014 (1.4 , 1.1) 21 0.0007 (1.3 , 0.8)
1.0 28 0.0279 (1.4 , 1.4) 21 0.0007 (1.1 , 1.0)
1.2 27 0.0009 (1.2 , 1.2) 20 0.0008 (1.1 , 1.0)
1.4 24 0.0009 (1.2 , 1.2) 19 0.0007 (1.1 , 1.0)
1.6 22 0.0026 (1.2 , 1.2) 21 0.0007 (1.3 , 1.0)
1.8 25 0.0232 (1.2 , 1.2) 33 0.0012 (1.3 , 1.2)
2.0 28 0.0007 (1.0 , 1.0) 69 0.0024 (1.5 , 1.4)

5. Conclusions

In this paper, we propose two preconditioned AOR iteration methods to solve
multi-linear systems withM-tensor. We prove that the two proposed methods
are convergent when the preconditioner satisfies certain conditions. Moreover,
the comparison theorem shows that the AOR iteration method with precondi-
tioner converges faster than the method without preconditioner. A new pre-
conditioner is given in the numerical examples. The results of the numerical
examples illustrate the effectiveness of these methods. In the future, we will
consider how to choose the best preconditioner.
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