• Title/Summary/Keyword: Ishikawa's iteration

Search Result 9, Processing Time 0.021 seconds

ON THE ON THE CONVERGENCE BETWEEN THE MANN ITERATION AND ISHIKAWA ITERATION FOR THE GENERALIZED LIPSCHITZIAN AND Φ-STRONGLY PSEUDOCONTRACTIVE MAPPINGS

  • Xue, Zhiqun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.45 no.4
    • /
    • pp.635-644
    • /
    • 2008
  • In this paper, we prove that the equivalence between the convergence of Mann and Ishikawa iterations for the generalized Lipschitzian and $\Phi$-strongly pseudocontractive mappings in real uniformly smooth Banach spaces. Our results significantly generalize the recent known results of [B. E. Rhoades and S. M. Soltuz, The equivalence of Mann iteration and Ishikawa iteration for non-Lipschitz operators, Int. J. Math. Math. Sci. 42 (2003), 2645.2651].

ITERATIVE PROCESS WITH ERRORS FOR m-ACCRETIVE OPERATORS

  • Baek, J.H;Cho, Y.J.;Chang, S.S
    • Journal of the Korean Mathematical Society
    • /
    • v.35 no.1
    • /
    • pp.191-205
    • /
    • 1998
  • In this paper, we prove that the Mann and Ishikawa iteration sequences with errors converge strongly to the unique solution of the equation x + Tx = f, where T is an m-accretive operator in uniformly smooth Banach spaces. Our results extend and improve those of Chidume, Ding, Zhu and others.

  • PDF

APPROXIMATING COMMON FIXED POINTS FOR TOTAL ASYMPTOTICALLY NONEXPANSIVE MAPPINGS

  • Kim, Gang-Eun
    • Journal of applied mathematics & informatics
    • /
    • v.30 no.1_2
    • /
    • pp.71-82
    • /
    • 2012
  • In this paper, we first show the weak convergence of the modified Ishikawa iteration process with errors of two total asymptotically nonexpansive mappings, which generalizes the result due to Khan and Fukhar-ud-din [1]. Next, we show the strong convergence of the modified Ishikawa iteration process with errors of two total asymptotically nonexpansive mappings satisfying Condition ($\mathbf{A}^{\prime}$), which generalizes the result due to Fukhar-ud-din and Khan [2].

Approximation of Common Fixed Points of Mean Non-expansive Mapping in Banach Spaces

  • Gu, Zhaohui;Li, Yongjin
    • Kyungpook Mathematical Journal
    • /
    • v.54 no.1
    • /
    • pp.103-111
    • /
    • 2014
  • Let X be a uniformly convex Banach space, and S, T be pair of mean nonexpansive mappings. Some necessary and sufficient conditions are given for Ishikawa iterative sequence converge to common fixed points, and we prove that the sequence of Ishikawa iterations associated with S and T converges to the common fixed point of S and T. This generalizes former results proved by Z. Gu and Y. Li [4].

Strong Convergence of Modified Iteration Processes for Relatively Nonexpansive Mappings

  • Kim, Tae-Hwa;Lee, Hwa-Jung
    • Kyungpook Mathematical Journal
    • /
    • v.48 no.4
    • /
    • pp.685-703
    • /
    • 2008
  • Motivated and inspired by ideas due to Matsushida and Takahashi [J. Approx. Theory 134(2005), 257-266] and Martinez-Yanes and Xu [Nonlinear Anal. 64(2006), 2400-2411], we prove some strong convergence theorems of modified iteration processes for a pair (or finite family) of relatively nonexpansive mappings in Banach spaces, which improve and extend the corresponding results of Matsushida and Takahashi and Martinez-Yanes and Xu in Banach and Hilbert spaces, repectively.

INERTIAL PICARD NORMAL S-ITERATION PROCESS

  • Dashputre, Samir;Padmavati, Padmavati;Sakure, Kavita
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.5
    • /
    • pp.995-1009
    • /
    • 2021
  • Many iterative algorithms like that Picard, Mann, Ishikawa and S-iteration are very useful to elucidate the fixed point problems of a nonlinear operators in various topological spaces. The recent trend for elucidate the fixed point via inertial iterative algorithm, in which next iterative depends on more than one previous terms. The purpose of the paper is to establish convergence theorems of new inertial Picard normal S-iteration algorithm for nonexpansive mapping in Hilbert spaces. The comparison of convergence of InerNSP and InerPNSP is done with InerSP (introduced by Phon-on et al. [25]) and MSP (introduced by Suparatulatorn et al. [27]) via numerical example.

CONVERGENCE THEOREMS FOR TWO NONLINEAR MAPPINGS IN CAT(0) SPACES

  • Sokhuma, Kritsana;Sokhuma, Kasinee
    • Nonlinear Functional Analysis and Applications
    • /
    • v.27 no.3
    • /
    • pp.499-512
    • /
    • 2022
  • In this paper, we construct an iteration scheme involving a hybrid pair of the Suzuki generalized nonexpansive single-valued and multi-valued mappings in a complete CAT(0) space. In process, we remove a restricted condition (called end-point condition) in Akkasriworn and Sokhuma's results [2] in Banach spaces and utilize the same to prove some convergence theorems. The results in this paper, are analogs of the results of Akkasriworn et al. [3] in Banach spaces.

Strong Convergence Theorems by Modified Four Step Iterative Scheme with Errors for Three Nonexpansive Mappings

  • JHADE, PANKAJ KUMAR;SALUJA, AMARJEET SINGH
    • Kyungpook Mathematical Journal
    • /
    • v.55 no.3
    • /
    • pp.667-678
    • /
    • 2015
  • The aim of this paper is to prove strong convergence theorem by a modified three step iterative process with errors for three nonexpansive mappings in the frame work of uniformly smooth Banach spaces. The main feature of this scheme is that its special cases can handle both strong convergence like Halpern type and weak convergence like Ishikawa type iteration schemes. Our result extend and generalize the result of S. H. Khan, Kim and Xu and many other authors.