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CONVERGENCE OF ISHIKAWA’METHOD FOR

GENERALIZED HYBRID MAPPINGS

Fangfang Yan, Yongfu Su, and Qinsheng Feng

Abstract. In this paper, we first talk about a more wide class of non-
linear mappings, Then, we deal with weak convergence theorems for gen-
eralized hybrid mappings in a Hilbert space.

1. Introduction

Let C be a nonempty closed convex subset of a real Hilbert space H. Then
a mapping T :C → C is said to be nonexpansive if ‖Tx − Ty‖ ≤ ‖x − y‖
for all x, y ∈ C. The set of fixed points of T is denoted by F (T ). A mapping
T : C → C with F (T ) 6= ∅ is called quasi-nonexpansive if ‖x− Ty‖ ≤ ‖x− y‖
for all x ∈ F (T ) and y ∈ C. It is well-known that the set F (T ) of fixed points
of a quasi-nonexpansive mapping T is closed and convex; see [10].

A important example of nonexpansive mappings in a Hilbert space is a firmly
nonexpansive mapping if

‖Fx− Fy‖2 ≤ 〈x− y, Fx− Fy〉

for all x, y ∈ C; see for instance, [3, 5]. It is known that a mapping F : C → C

is firmly nonexpansive if and only if

‖Fx− Fy‖2 + ‖(I − F )x − (I − F )y‖2 ≤ ‖x− y‖2

for all x, y ∈ C, where I is the identity mapping on H . It is also known that a
firmly nonexpansive mapping F can be deduced from an equilibrium problem
in a Hilbert space; see, for instance, [2, 4].

Recently, Kohsaka and Takahashi [11] introduced the following nonlinear
mapping: Let E be a smooth, strictly convex and reflexive Banach space, let
J be the duality mapping of E and let C be a nonempty closed convex subset
of E. Then, a mapping S : C → C is said to be nonspreading if

φ(Sx, Sy) + φ(Sy, Sx) ≤ φ(Sx, y) + φ(Sy, x)
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for all x, y ∈ C, where φ(x, y) = ‖x‖2 − 2〈x, Jy〉 + ‖y‖2 for all x, y ∈ E.
They consider such a mapping to study the resolvents of a maximal monotone
operator in the Banach space. In the case when E is a Hilbert space, we know
that φ(x, y) = ‖x − y‖2 for all x, y ∈ E. So, a nonspreading mapping [11]
S : C → C in a Hilbert space H is defined as follows:

2‖Sx− Sy‖2 ≤ ‖Sx− y‖2 + ‖x− Sy‖2

for all x, y ∈ C. A mapping T : C → C is called hybrid mapping [18] if

3‖Tx− Ty‖2 ≤ ‖x− y‖2 + ‖Tx− y‖2 + ‖Ty− x‖2

for all x, y ∈ C. They proved fixed point theorems for such mappings; see also
[12] and [8]. Aoyama et al. [1] introduced a class of nonlinear mappings called
λ-hybrid and obtained a generalization of Baillons nonlinear ergodic theorem;
see also [19]. Kocourek et al. [13] introduced a more wide class of nonlinear
mappings containing the class of hybrid mappings. They called such mappings
generalized hybrid mappings. Let C be a nonempty, closed and convex subset
of H . A mapping T : C → C is called generalized hybrid [22] if there exist
α, β ∈ R such that

(1.1) α‖Tx− Ty‖2 + (1 − α)‖x− Ty‖2 ≤ β‖Tx− y‖2 + (1− β)‖x− y‖2

for all x, y ∈ C. We call such a mapping an (α, β)-generalized hybrid map-
ping. It is well known that the (α, β)-generalized hybrid mapping is quasi-
nonexpansive if the set of fixed points of it is nonempty. They proved fixed
point theorems for such mappings; see [13]. We also observe that the map-
pings above generalize several well-known mappings. For example, an (α, β)-
generalized hybrid mapping is nonexpansive for α= 1 and β= 0, nonspreading
for α= 2 and β= 1, and hybrid for α = 3

2 and β = 1
2 .

There classical iteration processes are often used to approximate a fixed
point of a nonexpansive mapping. The first one is introduced by Halpern [6]
and is defined as follows: Take an initial guess x0 ∈ C arbitrarily and defined
{xn} recursively by

(1.2) xn+1 = tnx0 + (1− tn)Txn, n ∈ N ∪ {0},

where {tn}∞n=1 is a sequence in the interval [0, 1]. The second iteration process
is now known as Mann’s iteration process [14] which is defined as

(1.3) xn+1 = αnxn + (1− αn)Txn, n ∈ N ∪ {0},

where the initial guess x0 is taken in C arbitrarily and the sequence {αn}∞n=1

is in the interval [0, 1]. The third iteration process is referred to as Ishikawa’s
iteration process [9] which is defined recursively by

(1.4)

{

yn = βnxn + (1− βn)Txn,

xn+1 = αnxn + (1− αn)Tyn,

where the initial guess x0 is taken in C arbitrarily, {αn}∞n=1 and {βn}∞n=1 are
sequences in the interval [0, 1].
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In this paper, we also use these iteration processes or it’s evolvement to
finish our proof.

2. Preliminaries

Throughout this paper, we denote by N the set of positive integers and by
R the set of real numbers. Let H be a real Hilbert space with inner produce
〈·, ·〉 and norm ‖ · ‖. Let C be a nonempty closed convex subset of a Hilbert
space H . The nearest point projection of H onto C is denoted by PC , that is,
‖x − PCx‖ ≤ ‖x − y‖ for all x ∈ H and y ∈ C. Such PC is called the metric
projection of H onto C. We know that the metric projection PC is firmly
nonexpansive, i.e.,

‖PCx− PCy‖
2 ≤ 〈PCx− PCy, x− y〉

for all x, y ∈ H . Further 〈PCx−PCy, x−y〉 ≤ 0 holds for all x ∈ H and y ∈ C;
see, for instance, [16]. A Hilbert space satisfies Opials condition [15], that is,

lim inf
n→∞

‖xn − u‖ < lim inf
n→∞

‖xn − v‖

if xn → u and u 6= v; see [15].
We give the crucial lemmas in order to prove the main theorem.

Lemma 2.1 ([7]). Let H be a real Hilbert space. Then for all x, y ∈ H and

α ∈ [0, 1] the following inequality hold:

(2.1) ‖αx+ (1− α)y‖2 = α‖x‖2 + (1 − α)‖y‖2 − α(1− α)‖x − y‖2.

Lemma 2.2 ([18]). Let H be a Hilbert space and let S be a nonempty closed

convex subset of H. Let {xn} be a sequence in H. If ‖xn+1−x‖ ≤ ‖xn−x‖ for

all n ∈ N and x ∈ S, then {PS(xn)} converges strongly to some z ∈ S, where

PS stands for the metric projection on H onto S.

Using Opials theorem [15], we can also prove the following lemma; see, for
instance, [17].

Lemma 2.3. Let H be a Hilbert space and let {xn} be a sequence in H such

that there exists a nonempty subset S ⊂ H satisfying (i) and (ii):
(i) For every x∗ ∈ S, limn→∞ ‖xn − x∗‖ exists:
(ii) If a subsequence {xnj

} ⊂ {xn} converges weakly to x∗, then x∗ ∈ S.

Then there exists x0 ∈ S such that xn ⇀ x0.

3. Weakly convergence theorem

We are now in a position to prove our main theorem for weakly convergence
of generalized hybrid mappings in a Hilbert space.
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Theorem 3.1. Let C be a nonempty, closed convex subset of a real Hlibert

space H. Let T : C → C be a generalized hybrid mapping with F (T ) 6= ∅.
Suppose that {xn} is a sequence generated by x0 = x ∈ C, u ∈ C and

(3.1)

{

yn = (1− βn)xn + βnTxn,

xn+1 = (1 − αn)xn + αnTyn,

where {αn}∞n=1 and {βn}∞n=1 are sequences of [0, 1] with lim infn→∞ βn(1 −
βn) > 0 and 0 < a < αn < b < 1. Then {xn} converges weakly to x0 ∈ F (T ),
where x0 = limn→∞ PF (T )(xn).

Proof. Since F (T ) 6= ∅, T is quasi-nonexpansive. So, we have that for all
q ∈ F (T ) and n ∈ N We have

(3.2)

‖ yn − q ‖2

= (1 − βn)‖xn − q‖2 + βn‖Txn − q‖2 − βn(1− βn)‖xn − Txn‖
2

≤ (1 − βn)‖xn − q‖2 + βn‖xn − q‖2 − βn(1− βn)‖xn − Txn‖
2

= ‖xn − q‖2 − βn(1 − βn)‖xn − Txn‖
2

and hence

(3.3)

‖ xn+1 − q ‖

= ‖ (1− αn)xn + αnTyn − q ‖

= (1− αn)‖xn − q‖2 + αn‖Tyn − q‖2 − αn(1− αn)‖xn − Tyn‖
2

≤ (1− αn)‖xn − q‖2 + αn‖yn − q‖2 − αn(1− αn)‖xn − Tyn‖
2

≤ (1− αn)‖xn − q‖2 + αn‖xn − q‖2 − αnβn(1 − βn)‖xn − Txn‖
2

− αn(1− αn)‖xn − Tyn‖
2

≤ ‖xn − q‖2 − αnβn(1 − βn)‖xn − Txn‖
2

≤ ‖xn − q‖2.

Hence, we obtain that limn→∞ ‖xn − z‖ exists. This implies that {xn}, {yn},
{Tyn} are bounded. From 3.3, we know that

‖xn+1 − q‖2 ≤ ‖xn − q‖2 − αnβn(1− βn)‖xn − Txn‖
2.

Since 0 < a < αn < b < 1, we have that

‖xn+1 − q‖2 ≤ ‖xn − q‖2 − aβn(1 − βn)‖xn − Txn‖
2

we also know from lim infn→∞ βn(1 − βn) > 0 that

0 ≤ aβn(1 − βn)‖xn − Txn‖
2 ≤ ‖xn − q‖2 − ‖xn+1 − q‖2 → 0

as n → ∞. This means that

(3.4) lim
n→∞

‖xn − Txn‖ = 0.
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Since {xn} is bounded, then, there exists a subsequence {xni
} of {xn} such

that xni
⇀ x∗ ∈ C. Since T is a generalized hybrid mapping, then

α‖Tx− Ty‖2 + (1− α)‖x − Ty‖2 ≤ β‖Tx− y‖2 + (1 − β)‖x− y‖2

hence
(3.5)
0 ≤ β‖Tx− y‖2 + (1− β)‖x− y‖2 − α‖Tx− Ty‖2 − (1− α)‖x− Ty‖2

≤ β(‖Txn‖
2 − 2〈Txn, x

∗〉+ ‖x∗‖2) + (1− β)(‖xn‖
2 − 2〈xn, x

∗〉+ ‖x∗‖2)

− α(‖Txn‖
2 − 2〈Txn, T x

∗〉+ ‖Tx∗‖2)− (1− α)(‖xn‖
2 − 2〈xn, T x

∗〉

+ ‖Tx∗‖2)

= ‖x∗‖2 − ‖Tx∗‖2 + (β − α)(‖Txn‖
2 − ‖xn‖

2)

+ 2α〈Txn − xn, T x
∗〉 − 2β〈Txn − xn, x

∗〉+ 2〈xn, T x
∗ − x∗〉

≤ ‖x∗‖2 − ‖Tx∗‖2 + (β − α)(‖Txn‖+ ‖xn‖)(‖Txn − xn‖)

+ 2α〈Txn − xn, T x
∗〉 − 2β〈Txn − xn, x

∗〉+ 2〈xn, T x
∗ − x∗〉.

Thus, we have that for all i ∈ N,

(3.6)
0 ≤ ‖x∗‖2 − ‖Tx∗‖2 + (β − α)(‖Txni

‖+ ‖xni
‖)(‖Txni

− xni
‖)

+ 2α〈Txni
− xni

, T x∗〉 − 2β〈Txni
− xni

, x∗〉+ 2〈xni
, T x∗ − x∗〉.

From 3.4, we have that

lim
n→∞

‖xni
− Txni

‖ = 0,

and xni
⇀ x∗ as i → ∞, the above inequality implies that

(3.7)

0 ≤ ‖x∗‖2 − ‖Tx∗‖2 + 2〈x∗, T x∗ − x∗〉

= 2〈x∗, T x∗〉 − ‖x∗‖2 − ‖Tx∗‖2

= − ‖x∗ − Tx∗‖2.

So, we have Tx∗ = x∗, i.e., x∗ ∈ F (T ). Therefore we obtain that

x∗ ∈ F (T ).

This implies that the condition (ii) of Lemma 2.3 holds for S = F (T ). We also
know that limn→∞ ‖xn− q‖ exists for q ∈ S = F (T ). So, we have from Lemma
2.3 that there exists x0 ∈ S such that xn ⇀ x0 as n → ∞. Moreover, since for
any q ∈ S = F (T ),

‖xn+1 − q‖ ≤ ‖xn − q‖, ∀n ∈ N,

by Lemma 2.2 there exists some x ∈ S such that PS(xn) → x. The property
of metric projection implies that

〈x0 − PS(xn), xn − PS(xn)〉 ≤ 0.

Therefore, we have

〈x0 − x, x0 − x〉 = ‖x0 − x‖2 ≤ 0.



140 FANGFANG YAN, YONGFU SU, AND QINSHENG FENG

This means that x0 = x, i.e., xn ⇀ x0 = limn→∞ PF (T )(xn). �

Using Theorem 3.1 we prove the following weakly convergence theorem for
nonspreading mappings in a Hilbert space.

Theorem 3.2. Let C be a nonempty, closed convex subset of a real Hlibert

space H. Let T : C → C be a nonspreading mapping with F (T ) 6= ∅. Suppose

that {xn} is a sequence generated by x0 = x ∈ C, u ∈ C and
{

yn = (1− βn)xn + βnTxn,

xn+1 = (1 − αn)xn + αnTyn,

where {αn}∞n=1 and {βn}∞n=1 are sequences of [0, 1] with lim infn→∞ βn(1 −
βn) > 0 and 0 < a < αn < b < 1. Then {xn} converges weakly to x0 ∈ F (T ),
where x0 = limn→∞ PF (T )(xn).

Proof. Since T : C → C is an nonspreading mapping, then

2‖Sx− Sy‖2 ≤ ‖Sx− y‖2 + ‖x− Sy‖2.

The mapping T is a (2,1)-generalized hybrid mapping. The result follows im-
mediately from Theorem 3.1. �

Remark. We also can prove the weakly convergence theorem for hybrid map-
pings as α = 3

2 , β = 1
2 and nonexpansive mappings as α= 1, β= 0 in a Hilbert

space.
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