References
- R. E. Bruck, Nonexpansive projections on subsets of Banach spaces, Pacific J. Math., 47(1973), 341-355. https://doi.org/10.2140/pjm.1973.47.341
- F. E. Browder, Convergence of approximations to fixed points of nonexpansive mappings in Banach spaces, Arch. Rational Mech. Anal., 24(1967), 82-90.
- Y. J. Cho, H. Zhou, G. Guo, Weak and strong convergence theorems for three-step iterations with errors for asymptotically nonexpansive mappings, Comput. Math. Appl., 47(2004), 707-717. https://doi.org/10.1016/S0898-1221(04)90058-2
- G. Das, J. P. Debata, Fixed points of quasi-nonexpansive mappings, Indian J. Pure Appl. Math., 17(1986), 1263-1269.
- K. Goebel, S. Reich, Uniform convexity, hyperbolic geometry, and nonexpansive mappings, Markel Dekker, New York, 1984.
- K. Goebel, J. Lindenstrass, An example concerning fixed points, Israel J. Math., 22(1975), 81-86. https://doi.org/10.1007/BF02757276
- B. Halpern, Fixed points of nonexpansive maps, Bull. Amer. Math. Soc., 73(1967), 957-961. https://doi.org/10.1090/S0002-9904-1967-11864-0
- S. Ishikawa, Fixed points by a new iteration method, Proc. Amer. Math. Soc., 44(1974), 147-150. https://doi.org/10.1090/S0002-9939-1974-0336469-5
- S. H. Khan, Estimating common fixed points of two nonexpansive mappings by strong convergence, Nihonkai Math. J., 11(2)(2000), 159-165.
- S. H. Khan, Common fixed points by a ganeralized iteration scheme with errors, Surveys in Mathematics and its Applications, 6(2011), 117-126.
- S. H. Khan, H. Fukhar, Weak and strong convergence of a scheme with errors for two nonexpansive mappings, Nonlinear Anal., TMA, 61(8)(2005), 1295-1301. https://doi.org/10.1016/j.na.2005.01.081
- T. H. Kim, H. K. Xu, Strong convergence of modified Mann iterations, Nonlinear Anal., 61(2005), 51-60. https://doi.org/10.1016/j.na.2004.11.011
- W. R. Mann, Mean value methods in iterations, Proc. Amer. Math. Soc., 4(1953), 506-510. https://doi.org/10.1090/S0002-9939-1953-0054846-3
- M. A. Noor, New approximation schemes for general variational inequalities, J. Math. Anal. Appl., 251(2000), 217-229. https://doi.org/10.1006/jmaa.2000.7042
- S. Reich, Weak convergence theorems for nonexpansive mappings in Banach spaces, J. Math. Anal. Appl., 67(1979), 274-276. https://doi.org/10.1016/0022-247X(79)90024-6
- S. Reich, Strong convergence theorems for resolvents of accretive operators in Banach spaces, J. Math. Anal. Appl., 75(1980), 287-292. https://doi.org/10.1016/0022-247X(80)90323-6
- S. Reich, Asymptotic behaviour of contractions in Banach spaces, J. Math. Anal. Appl., 44(1973), 57-70. https://doi.org/10.1016/0022-247X(73)90024-3
- N. Shioji, W. Takahashi, Strong convergence of approximated sequences for nonexpansive mappings in Banach spaces, Proc. Amer. Math. Soc., 129(1997), 3641-3645.
- Y. Su, X. Qin, Strong convergence of modified Noor iterations, Int. J. Math. Math. Sci., 2006(2006), Article ID 21073.
- K. K. Tan, H. K. Xu, Approximating fixed points of nonexpansive by the Ishikawa iteration process, J. Math. Anal. Appl., 178(1993), 301-308. https://doi.org/10.1006/jmaa.1993.1309
- H. K. Xu, Iterative algorithms for nonlinear operators, J. London Math. Soc., 66(2002), 240-256. https://doi.org/10.1112/S0024610702003332
- B. L. Xu, M. A. Noor, Fixed point iterations for asymptotically nonexpansive mappings in Banach spaces, J. Math. Anal. Appl., 267(2002), 444-453. https://doi.org/10.1006/jmaa.2001.7649