• 제목/요약/키워드: Ion-doping

검색결과 331건 처리시간 0.026초

A Two-Dimensional (2D) Analytical Model for the Potential Distribution and Threshold Voltage of Short-Channel Ion-Implanted GaAs MESFETs under Dark and Illuminated Conditions

  • Tripathi, Shweta;Jit, S.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제11권1호
    • /
    • pp.40-50
    • /
    • 2011
  • A two-dimensional (2D) analytical model for the potential distribution and threshold voltage of short-channel ion-implanted GaAs MESFETs operating in the sub-threshold regime has been presented. A double-integrable Gaussian-like function has been assumed as the doping distribution profile in the vertical direction of the channel. The Schottky gate has been assumed to be semi-transparent through which optical radiation is coupled into the device. The 2D potential distribution in the channel of the short-channel device has been obtained by solving the 2D Poisson's equation by using suitable boundary conditions. The effects of excess carrier generation due to the incident optical radiation in channel region have been included in the Poisson's equation to study the optical effects on the device. The potential function has been utilized to model the threshold voltage of the device under dark and illuminated conditions. The proposed model has been verified by comparing the theoretically predicted results with simulated data obtained by using the commercially available $ATLAS^{TM}$ 2D device simulator.

Recent Development in the Rate Performance of Li4Ti5O12

  • Lin, Chunfu;Xin, Yuelong;Cheng, Fuquan;Lai, Man On;Zhou, Henghui;Lu, Li
    • Applied Science and Convergence Technology
    • /
    • 제23권2호
    • /
    • pp.72-82
    • /
    • 2014
  • Lithium-ion batteries (LIBs) have become popular electrochemical devices. Due to the unique advantages of LIBs in terms of high operating voltage, high energy density, low self-discharge, and absence of memory effects, their application range, which was primarily restricted to portable electronic devices, is now being extended to high-power applications, such as electric vehicles (EVs) and hybrid electrical vehicles (HEVs). Among various anode materials, $Li_4Ti_5O_{12}$ (LTO) is believed to be a promising anode material for high-power LIBs due to its advantages of high working potential and outstanding cyclic stability. However, the rate performance of LTO is limited by its intrinsically low electronic conductivity and poor $Li^+$ ion diffusion coefficient. This review highlights the recent progress in improving the rate performance of LTO through doping, compositing, and nanostructuring strategies.

Effect of B-Cation Doping on Oxygen Vacancy Formation and Migration in LaBO3: A Density Functional Theory Study

  • Kwon, Hyunguk;Park, Jinwoo;Kim, Byung-Kook;Han, Jeong Woo
    • 한국세라믹학회지
    • /
    • 제52권5호
    • /
    • pp.331-337
    • /
    • 2015
  • $LaBO_3$ (B = Cr, Mn, Fe, Co, and Ni) perovskites, the most common perovskite-type mixed ionic-electronic conductors (MIECs), are promising candidates for intermediate-temperature solid oxide fuel cell (IT-SOFC) cathodes. The catalytic activity on MIEC-based cathodes is closely related to the bulk ionic conductivity. Doping B-site cations with other metals may be one way to enhance the ionic conductivity, which would also be sensitively influenced by the chemical composition of the dopants. Here, using density functional theory (DFT) calculations, we quantitatively assess the activation energies of bulk oxide ion diffusion in $LaBO_3$ perovskites with a wide range of combinations of B-site cations by calculating the oxygen vacancy formation and migration energies. Our results show that bulk oxide ion diffusion dominantly depends on oxygen vacancy formation energy rather than on the migration energy. As a result, we suggest that the late transition metal-based perovskites have relatively low oxygen vacancy formation energies, and thereby exhibit low activation energy barriers. Our results will provide useful insight into the design of new cathode materials with better performance.

Simple Route to High-performance and Solution-processed ZnO Thin Film Transistors Using Alkali Metal Doping

  • 김연상;박시윤;김경준;임건희
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.187-187
    • /
    • 2012
  • Solution-processed metal-alloy oxides such as indium zinc oxide (IZO), indium gallium zinc oxide (IGZO) has been extensively researched due to their high electron mobility, environmental stability, optical transparency, and solution-processibility. In spite of their excellent material properties, however, there remains a challenging problem for utilizing IZO or IGZO in electronic devices: the supply shortage of indium (In). The cost of indium is high, what is more, indium is becoming more expensive and scarce and thus strategically important. Therefore, developing an alternative route to improve carrier mobility of solution-processable ZnO is critical and essential. Here, we introduce a simple route to achieve high-performance and low-temperature solution-processed ZnO thin film transistors (TFTs) by employing alkali-metal doping such as Li, Na, K or Rb. Li-doped ZnO TFTs exhibited excellent device performance with a field-effect mobility of $7.3cm^2{\cdot}V-1{\cdot}s-1$ and an on/off current ratio of more than 107. Also, in case of higher drain voltage operation (VD=60V), the field effect mobility increased up to $11.45cm^2{\cdot}V-1{\cdot}s-1$. These all alkali metal doped ZnO TFTs were fabricated at maximum process temperature as low as $300^{\circ}C$. Moreover, low-voltage operating ZnO TFTs was fabricated with the ion gel gate dielectrics. The ultra high capacitance of the ion gel gate dielectrics allowed high on-current operation at low voltage. These devices also showed excellent operational stability.

  • PDF

Key Factors for the Development of Silicon Quantum Dot Solar Cell

  • 김경중;박재희;홍승휘;최석호;황혜현;장종식
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.207-207
    • /
    • 2012
  • Si quantum dot (QD) imbedded in a $SiO_2$ matrix is a promising material for the next generation optoelectronic devices, such as solar cells and light emission diodes (LEDs). However, low conductivity of the Si quantum dot layer is a great hindrance for the performance of the Si QD-based optoelectronic devices. The effective doping of the Si QDs by semiconducting elements is one of the most important factors for the improvement of conductivity. High dielectric constant of the matrix material $SiO_2$ is an additional source of the low conductivity. Active doping of B was observed in nanometer silicon layers confined in $SiO_2$ layers by secondary ion mass spectrometry (SIMS) depth profiling analysis and confirmed by Hall effect measurements. The uniformly distributed boron atoms in the B-doped silicon layers of $[SiO_2(8nm)/B-doped\;Si(10nm)]_5$ films turned out to be segregated into the $Si/SiO_2$ interfaces and the Si bulk, forming a distinct bimodal distribution by annealing at high temperature. B atoms in the Si layers were found to preferentially substitute inactive three-fold Si atoms in the grain boundaries and then substitute the four-fold Si atoms to achieve electrically active doping. As a result, active doping of B is initiated at high doping concentrations above $1.1{\times}10^{20}atoms/cm^3$ and high active doping of $3{\times}10^{20}atoms/cm^3$ could be achieved. The active doping in ultra-thin Si layers were implemented to silicon quantum dots (QDs) to realize a Si QD solar cell. A high energy conversion efficiency of 13.4% was realized from a p-type Si QD solar cell with B concentration of $4{\times}1^{20}atoms/cm^3$. We will present the diffusion behaviors of the various dopants in silicon nanostructures and the performance of the Si quantum dot solar cell with the optimized structures.

  • PDF

Li Ion Diffusivity and Rate Performance of the LiFePO4 Modified by Cr Doping

  • Park, Chang-Kyoo;Park, Sung-Bin;Shin, Ho-Chul;Cho, Won-Il;Jang, Ho
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권1호
    • /
    • pp.191-195
    • /
    • 2011
  • This study reports the root cause of the improved rate performance of $LiFePO_4$ after Cr doping. By measuring the chemical diffusion coefficient of lithium ($D_{Li}$) using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), the correlation between the electrochemical performance of $LiFePO_4$ and Li diffusion is acquired. The diffusion constants for $LiFePO_4$/C and $LiFe_{0.97}Cr_{0.03}PO_4$/C measured from CV are $2.48{\times}10^{-15}$ and $4.02{\times}10^{-15}cm^2s^{-1}$, respectively, indicating significant increases in diffusivity after the modification. The difference in diffusivity is also confirmed by EIS and the $D_{Li}$ values obtained as a function of the lithium content in the cathode. These results suggest that Cr doping facilitates Li ion diffusion during the charge-discharge cycles. The low diffusivity of the $LiFePO_4$/C leads to the considerable capacity decline at high discharge rates, while high diffusivity of the $LiFe_{0.97}Cr_{0.03}PO_4$/C maintains the initial capacity, even at high C-rates.

The Effect of Y Doping on Electrochemical Behavior of Spherical $Li_4Ti_5O_{12}$ for Li-ion Batteries

  • 지미정;최병현
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 추계학술발표대회
    • /
    • pp.31.1-31.1
    • /
    • 2011
  • $Li_4Ti_5O_{12}$ is emerging as a promising material with its good structure stability and little volume change during the electrochemical reaction. However, its electrochemical performance is significantly limited by low electronic or ionic conductivity. In addition, high tap density is needed forim proving its volumetric energy density and commercialization. To enhance these properties, the spherical-like $Li_4Ti_5O_{12}$ particles were synthesized and carried out doping with yttrium. Prepared Y-doped $Li_4Ti_5O_{12}$ as a anode material showed great capacity retention rate of 92% (5C/0.2C), compared with no dope done. Consequently, it was found that Y doping into $Li_4Ti_5O_{12}$ matrix reduces the polarization and resistance on SEI layer during the electrochemical reaction.

  • PDF

Determination of Niflumic Acid in Human Urine by Gas Chromatography/Negative Chemical lonization Mass Spectrometry

  • Myung, Seung-Woon;Kim, Myung-Soo;Cho, Hyun-Woo;Park, Jong-Sei
    • Archives of Pharmacal Research
    • /
    • 제19권6호
    • /
    • pp.566-569
    • /
    • 1996
  • A sensitivity method has been developed for the detection and determination of niflmic acid(NA) in human urine. Samples were extracted with diethylether. Flunixin (FN) was added to the sample prior to extraction as an internal standard. Niflumic acid was converted to its methyl derivative and analyzed by capillary gas chromatography/negative chemical isonization mass spectrometry. Using selected ion monitoring (SIM), the levels of NA down to 5 pg/ml could be detected in 5 ml spiked urine sample. Calibration curve was linear over the range of 0.5 ppm-50 ppm. The recovery of niflumic acid from urine at 40 pg/ml was to be $91.7{\pm}3.8(n=3)$ and the coefficient of variation was 4.1%.

  • PDF

새로운 대기압 플라즈마 제트를 이용한 태양전지용 고농도 선택적 도핑에 관한 연구 (Research of Heavily Selective Emitter Doping for Making Solar Cell by Using the New Atmospheric Plasma Jet)

  • 조이현;윤명수;손찬희;조태훈;김동해;서일원;노준형;전부일;김인태;최은하;조광섭;권기청
    • 한국진공학회지
    • /
    • 제22권5호
    • /
    • pp.238-244
    • /
    • 2013
  • 태양전지 제조공정에서 열처리로 레이저를 사용하는 도핑공정은 태양전지의 성능을 결정짓는 중요한 요소이다. 그러나 퍼니스를 이용하는 공정에서는 선택적으로 고농도(Heavy) 도핑영역을 형성하기가 어렵다. 레이저를 사용한 선택적 도핑의 경우 고가의 레이저 장비가 요구되어지며, 레이저 도핑 후 고온의 에너지로 인한 웨이퍼의 구조적 손상 문제가 발생된다. 본 연구는 저가이면서 코로나 방전 구조의 대기압 플라즈마 소스를 제작하였고, 이를 통한 선택적 도핑에 관한 연구를 하였다. 대기압 플라즈마 제트는 Ar 가스를 주입하여 수십 kHz 주파수를 인가하여 플라즈마를 발생시키는 구조로 제작하였다. P-type 웨이퍼(Cz)에 인(P)이 shallow 도핑 된(120 Ohm/square) PSG (Phosphorus Silicate Glass)가 제거되지 않은 웨이퍼를 사용하였다. 대기압 플라즈마 도핑 공정 처리시간은 15 s와 30 s이며, 플라즈마 전류는 40 mA와 70 mA로 처리하였다. 웨이퍼의 도핑프로파일은 SIMS (Secondary Ion Mass Spectroscopy)측정을 통하여 분석하였으며, 도핑프로파일로 전기적 특성인 면저항(sheet resistance)을 파악하였다. 도펀트로 사용된 PSG에 대기압 플라즈마 제트로 도핑공정을 처리한 결과 전류와 플라즈마 처리시간이 증가됨에 따라 도핑깊이가 깊어지고, 면저항이 향상하였다. 대기압 플라즈마 도핑 후 웨이퍼의 표면구조 손상파악을 위한 SEM (Scanning Electron Microscopy) 측정결과 도핑 전과 후 웨이퍼의 표면구조는 차이가 없음을 확인하였으며, 대기압 플라즈마 도핑 폭도 전류와 플라즈마 처리시간이 증가됨에 따라 증가하였다.

도핑분포함수에 따른 비대칭 MOSFET의 문턱전압이하 스윙 분석 (Analysis of Subthreshold Swing for Doping Distribution Function of Asymmetric Double Gate MOSFET)

  • 정학기
    • 한국정보통신학회논문지
    • /
    • 제18권5호
    • /
    • pp.1143-1148
    • /
    • 2014
  • 본 연구에서는 비대칭 이중게이트 MOSFET의 채널 내 도핑분포함수의 변화에 따른 문턱전압이하 스윙의 변화를 분석하였다. 이중게이트 MOSFET의 특성을 결정하는 가장 기본적인 요소는 채널의 크기 즉, 채널길이, 채널두께 등과 채널의 도핑분포함수이다. 도핑분포는 채널도핑 시 사용하는 이온주입법에 의하여 결정되며 일반적으로 가우스분포함수에 준한다고 알려져 있다. 포아송방정식을 이용하여 전하분포를 구하기 위하여 가우스분포함수을 이용하였다. 가우스분포함수는 반드시 상하 대칭이 아니므로 채널길이 및 채널두께, 그리고 비대칭 이중게이트 MOSFET의 상하단 게이트 전압 변화 등에 따라 문턱전압이하 스윙 값은 크게 변화할 것이다. 이에 본 연구에서는 가우스분포함수의 파라미터인 이온주입범위 및 분포편차에 따른 문턱전압이하 스윙의 변화를 관찰하고자 한다. 분석결과, 문턱전압이하 스윙은 도핑분포함수 및 게이트 전압 등에 따라 크게 영향을 받는 것을 관찰할 수 있었다.