DOI QR코드

DOI QR Code

Effect of B-Cation Doping on Oxygen Vacancy Formation and Migration in LaBO3: A Density Functional Theory Study

  • Kwon, Hyunguk (Department of Chemical Engineering, University of Seoul) ;
  • Park, Jinwoo (Graphene Research Institute and Department of Physics, Sejong University) ;
  • Kim, Byung-Kook (High Temperature Energy Materials Center, Korea Institute of Science and Technology) ;
  • Han, Jeong Woo (Department of Chemical Engineering, University of Seoul)
  • Received : 2015.07.27
  • Accepted : 2015.08.31
  • Published : 2015.09.30

Abstract

$LaBO_3$ (B = Cr, Mn, Fe, Co, and Ni) perovskites, the most common perovskite-type mixed ionic-electronic conductors (MIECs), are promising candidates for intermediate-temperature solid oxide fuel cell (IT-SOFC) cathodes. The catalytic activity on MIEC-based cathodes is closely related to the bulk ionic conductivity. Doping B-site cations with other metals may be one way to enhance the ionic conductivity, which would also be sensitively influenced by the chemical composition of the dopants. Here, using density functional theory (DFT) calculations, we quantitatively assess the activation energies of bulk oxide ion diffusion in $LaBO_3$ perovskites with a wide range of combinations of B-site cations by calculating the oxygen vacancy formation and migration energies. Our results show that bulk oxide ion diffusion dominantly depends on oxygen vacancy formation energy rather than on the migration energy. As a result, we suggest that the late transition metal-based perovskites have relatively low oxygen vacancy formation energies, and thereby exhibit low activation energy barriers. Our results will provide useful insight into the design of new cathode materials with better performance.

Keywords

References

  1. N. Q. Minh, "Ceramic Fuel Cells," J. Am. Ceram. Soc., 76 [3] 563-88 (1993). https://doi.org/10.1111/j.1151-2916.1993.tb03645.x
  2. B. C. H. Steele and A. Heinzel, "Materials for Fuel-cell Technologies," Nature, 414 [6861] 345-52 (2001). https://doi.org/10.1038/35104620
  3. S. M. Haile, "Fuel Cell Materials and Components," Acta Mater., 51 [19] 5981-6000 (2003). https://doi.org/10.1016/j.actamat.2003.08.004
  4. E. D. Wachsman and K. T. Lee, "Lowering the Temperature of Solid Oxide Fuel Cells," Science, 334 [6058] 935-39 (2011). https://doi.org/10.1126/science.1204090
  5. M. M. Kuklja, E. A. Kotomin, R. Merkle, Y. A. Mastrikov, and J. Maier, "Combined Theoretical and Experimental Analysis of Processes Determining Cathode Performance in Solid Oxide Fuel Cells," Phys. Chem. Chem. Phys., 15 [15] 5443-71 (2013). https://doi.org/10.1039/c3cp44363a
  6. Y. A. Mastrikov, M. M. Kuklja, E. A. Kotomin, and J. Maier, "First-principles Modelling of Complex Perovskite $(Ba_{1-x}Sr_x)(Co_{1-y}Fe_y)O_{3-{\delta}}$ for Solid Oxide Fuel Cell and Gas Separation Membrane Applications," Energy Environ. Sci., 3 [10] 1544-50 (2010). https://doi.org/10.1039/c0ee00096e
  7. A. B. Munoz-Garcia, D. E. Bugaris, M. Pavone, J. P. Hodges, A. Huq, F. Chen, H. -C. zur Loye, and E. A. Carter, "Unveiling Structure-property Relationships in $Sr_2Fe_{1.5}Mo_{0.5}O_{6-{\delta}}$, an Electrode Material for Symmetric Solid Oxide Fuel Cells," J. Am. Chem. Soc., 134 [15] 6826-33 (2012). https://doi.org/10.1021/ja300831k
  8. Z. Wang, R. Peng, W. Zhang, X. Wu, C. Xia, and Y. Lu, "Oxygen Reduction and Transport on the $La_{1-x}Sr_xCo_{1-y}Fe_yO_{3-{\delta}}$ Cathode in Solid Oxide Fuel Cells: A First-principles Study," J. Mater. Chem. A, 1 [41] 12932-40 (2013). https://doi.org/10.1039/c3ta11554b
  9. S. B. Adler, "Factors Governing Oxygen Reduction in Solid Oxide Fuel Cell Cathodes," Chem. Rev., 104 4791-844 (2004). https://doi.org/10.1021/cr020724o
  10. S. B. Adler, "Electrode Kinetics of Porous Mixed-conducting Oxygen Electrodes," J. Electrochem. Soc., 143 [11] 3554 (1996). https://doi.org/10.1149/1.1837252
  11. S. B. Adler, "Mechanism and Kinetics of Oxygen Reduction on Porous $La_{1-x}Sr_xCoO_{3-{\delta}}$ Electrodes," Solid State Ionics, 111 [1-2] 125-34 (1998). https://doi.org/10.1016/S0167-2738(98)00179-9
  12. S. Choi, S. Yoo, J. Kim, S. Park, A. Jun, S. Sengodan, J. Kim, J. Shin, H. Y. Jeong, Y. -M. Choi, G. Kim, and M. Liu, "Highly Efficient and Robust Cathode Materials for Lowtemperature Solid Oxide Fuel Cells: $PrBa_{0.5}Sr_{0.5}Co_{2-x}Fe_xO_{5+{\delta}}$," Sci. Rep., 3 (2013).
  13. S. Bao, C. Ma, G. Chen, X. Xu, E. Enriquez, C. Chen, Y. Zhang, J. L. Bettis Jr., M. -H. Whangbo, C. Dong, and Q. Zhang, "Ultrafast Atomic Layer-by-layer Oxygen Vacancyexchange Diffusion in Double-perovskite $LnBaCo_2O_{5.5+{\delta}}$ Thin Films," Sci. Rep., 4 4726 (2014).
  14. C. N. Munnings, S. J. Skinner, G. Amow, P. S. Whitfield, and I. J. Davidson, "Oxygen Transport in the $La_2Ni_{1-x}Co_xO_{4+{\delta}}$ System," Solid State Ionics, 176 [23-24] 1895-901 (2005). https://doi.org/10.1016/j.ssi.2005.06.002
  15. E. Boehm, J. -M. Bassat, P. Dordor, F. Mauvy, J. -C. Grenier, and Ph. Stevens, "Oxygen Diffusion and Transport Properties in Non-stoichiometric $Ln_{2-x}NiO_{4+{\delta}}$ Oxides," Solid State Ionics, 176 [37-38] 2717-25 (2005). https://doi.org/10.1016/j.ssi.2005.06.033
  16. J. W. Han and B. Yildiz, "Enhanced One Dimensional Mobility of Oxygen on Strained $LaCoO_3$(001) Surface," J. Mater. Chem., 21 [47] 18983 (2011). https://doi.org/10.1039/c1jm12830b
  17. H. Jalili, J. W. Han, Y. Kuru, Z. Cai, and B. Yildiz, "New Insights into the Strain Coupling to Surface Chemistry, Electronic Structure, and Reactivity of $La_{0.7}Sr_{0.3}MnO_3$," J. Phys. Chem. Lett., 2 [7] 801-7 (2011). https://doi.org/10.1021/jz200160b
  18. Z. Cai, Y. Kuru, J. W. Han, Y. Chen, and B. Yildiz, "Surface Electronic Structure Transitions at High Temperature on Perovskite Oxides: The Case of Strained $La_{0.8}Sr_{0.2}CoO_3$ Thin Films," J. Am. Chem. Soc., 133 [44] 17696-704 (2011). https://doi.org/10.1021/ja2059445
  19. M. Kubicek, Z. Cai, W. Ma, B. Yildiz, H. Hutter, and J. Fleig, "Tensile Lattice Strain Accelerates Oxygen Surface Exchange and Diffusion in $La_{1-x}Sr_xCoO_{3-{\delta}}$ Thin Films," ACS Nano, 7 [4] 3276-86 (2013). https://doi.org/10.1021/nn305987x
  20. J. L. M. Rupp, E. Fabbri, D. Marrocchelli, J. W. Han, D. Chen, E. Traversa, H. L. Tuller, and B. Yildiz, "Scalable Oxygen-ion Transport Kinetics in Metal-oxide Films: Impact of Thermally Induced Lattice Compaction in Acceptor Doped Ceria Films," Adv. Funct. Mater., 24 [11] 1562-74 (2014). https://doi.org/10.1002/adfm.201302117
  21. X. Yue, A. Yan, M. Zhang, L. Liu, Y. Dong, and M. Chen, "Investigation on Scandium-Doped Manganate $La_{0.8}Sr_{0.2}Mn_{1-x}Sc_xO_{3-{\delta}}$ Cathode for Intermediate Temperature Solid Oxide Fuel Cells," J. Power Sources, 185 [2] 691-97 (2008). https://doi.org/10.1016/j.jpowsour.2008.08.038
  22. V. Dusastre and J. A. Kilner, "Optimisation of Composite Cathodes for Intermediate Temperature SOFC Applications," Solid State Ionics, 126 [1-2] 163-74 (1999). https://doi.org/10.1016/S0167-2738(99)00108-3
  23. B. C. H. Steele, "Survey of Materials Selection for Ceramic Fuel Cells II. Cathodes and Anodes," Solid State Ionics, 86-88 1223-34 (1996). https://doi.org/10.1016/0167-2738(96)00291-3
  24. H. L. Tuller, "Semiconduction and Mixed Ionic-electronic Conduction in Nonstoichiometric Oxides: Impact and Control," Solid State Ionics, 94 [1-4] 63-74 (1997). https://doi.org/10.1016/S0167-2738(96)00585-1
  25. M. Cherry, M. S. Islam, and C. R. A. Catlow, "Oxygen Ion Migration in Perovskite-type Oxides," J. Solid State Chem., 118 [1] 125-32 (1995). https://doi.org/10.1006/jssc.1995.1320
  26. A. M. Ritzmann, A. B. Muñoz-García, M. Pavone, J. A. Keith, and E. A. Carter, "Ab Initio DFT+U Analysis of Oxygen Vacancy Formation and Migration in $La_{1-x}Sr_xFeO_{3-{\delta}}$ (x = 0, 0.25, 0.50)," Chem. Mater., 25 [15] 3011-19 (2013). https://doi.org/10.1021/cm401052w
  27. A. B. Munoz-Garcia, M. Pavone, A. M. Ritzmann, and E. A. Carter, "Oxide Ion Transport in $Sr_2Fe_{1.5}Mo_{0.5}O_{6-{\delta}}$, A Mixed Ion-electron Conductor: New Insights from First Principles Modeling," Phys. Chem. Chem. Phys., 15 [17] 6250-59 (2013). https://doi.org/10.1039/c3cp50995h
  28. A. B. Munoz-Garcia, A. M. Ritzmann, M. Pavone, J. A. Keith, and E. A. Carter, "Oxygen Transport in Perovskitetype Solid Oxide Fuel Cell Materials: Insights from Quantum Mechanics," Acc. Chem. Res., 47 [11] 3340-48 (2014). https://doi.org/10.1021/ar4003174
  29. G. Kresse and J. Furthmuller, "Efficient Iterative Schemes for Ab Initio Total-energy Calculations Using a Plane-wave Basis Set," Phys. Rev. B, 54 [16] 11169-86 (1996). https://doi.org/10.1103/PhysRevB.54.11169
  30. G. Kresse and J. Furthmüller, "Efficiency of Ab-initio Total Energy Calculations for Metals and Semiconductors Using a Plane-wave Basis Set," Comput. Mater. Sci., 6 [1] 15-50 (1996). https://doi.org/10.1016/0927-0256(96)00008-0
  31. J. P. Perdew, K. Burke, and M. Ernzerhof, "Generalized Gradient Approximation Made Simple," Phys. Rev. Lett., 77 [18] 3865-68 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
  32. E. A. Carter, "Challenges in Modeling Materials Properties without Experimental Input," Science, 321 [5890] 800-3 (2008). https://doi.org/10.1126/science.1158009
  33. S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, and A. P. Sutton, "Electron-energy-loss Spectra and the Structural Stability of Nickel Oxide: An LSDA+U Study," Phys. Rev. B, 57 [3] 1505-9 (1998). https://doi.org/10.1103/PhysRevB.57.1505
  34. L. Wang, T. Maxisch, and G. Ceder, "Oxidation Energies of Transition Metal Oxides within the GGA+U Framework," Phys. Rev. B, 73 [19] 195107 (2006). https://doi.org/10.1103/PhysRevB.73.195107
  35. H. J. Monkhorst and J. D. Pack, "Special Points for Brillouin- zone Integrations," Phys. Rev. B, 13 [12] 5188-92 (1976). https://doi.org/10.1103/PhysRevB.13.5188
  36. Y. -L. Lee and D. Morgan, "Ab Initio Defect Energetics of Perovskite (001) Surfaces for Solid Oxide Fuel Cells: A Comparative Study of $LaMnO_3$ versus $SrTiO_3$ and $LaAlO_3$," Phys. Rev. B, 91 [19] 195430 (2015). https://doi.org/10.1103/PhysRevB.91.195430
  37. T. Mayeshiba and D. Morgan, "Strain Effects on Oxygen Migration in Perovskites," Phys. Chem. Chem. Phys., 17 [4] 2715-21 (2015). https://doi.org/10.1039/C4CP05554C
  38. Y. -L. Lee, J. Kleis, J. Rossmeisl, Y. Shao-Horn, and D. Morgan, "Prediction of Solid Oxide Fuel Cell Cathode Activity with First-principles Descriptors," Energy Environ. Sci., 4 [10] 3966-70 (2011). https://doi.org/10.1039/c1ee02032c
  39. J. Ko, H. Kwon, H. Kang, B. -K. Kim, and J. W. Han, "Universality in Surface Mixing Rule of Adsorption Strength for Small Adsorbates on Binary Transition Metal Alloys," Phys. Chem. Chem. Phys., 17 [5] 3123-30 (2015). https://doi.org/10.1039/C4CP04770B
  40. M. Pavone, A. M. Ritzmann, and E. A. Carter, "Quantummechanics- based Design Principles for Solid Oxide Fuel Cell Cathode Materials," Energy Environ. Sci., 4 [12] 4933- 37 (2011). https://doi.org/10.1039/c1ee02377b
  41. A. M. Deml, V. Stevanović, C. L. Muhich, C. B. Musgrave, and O'Hayre "Oxide Enthalpy of Formation and Band Gap Energy as Accurate Descriptors of Oxygen Vacancy Formation Energetics," Energy Environ. Sci., 7 [6] 1996-2004 (2014). https://doi.org/10.1039/c3ee43874k
  42. G. Henkelman, B. P. Uberuaga, and H. Jonsson, "A Climbing Image Nudged Elastic Band Method for Finding Saddle Points and Minimum Energy Paths," J. Chem. Phys., 113 [22] 9901 (2000). https://doi.org/10.1063/1.1329672
  43. D. Sheppard, R. Terrell, and G. Henkelman, "Optimization Methods for Finding Minimum Energy Paths," J. Chem. Phys., 128 [13] 134106 (2008). https://doi.org/10.1063/1.2841941
  44. J. W. Han and B. Yildiz, "Mechanism for Enhanced Oxygen Reduction Kinetics at the $(La,Sr)CoO_{3-{\delta}}/(La,Sr)_2CoO_{4+{\delta}}$ Hetero- interface," Energy Environ. Sci., 5 [9] 8598-607 (2012). https://doi.org/10.1039/c2ee03592h
  45. J. H. Kuo, H. U. Anderson, and D. M. Sparlin, "Oxidationreduction Behavior of Undoped and Sr-Doped $LaMnO_3$ Nonstoichiometry and Defect Structure," J. Solid State Chem., 83 [1] 52-60 (1989). https://doi.org/10.1016/0022-4596(89)90053-4
  46. J. Nowotny and M. Rekas, "Defect Chemistry of (La,Sr) $MnO_3$," J. Am. Ceram. Soc., 81 [1] 67-80 (1998). https://doi.org/10.1111/j.1151-2916.1998.tb02297.x
  47. J. Mizusaki, M. Yoshihiro, S. Yamauchi, and K. Fueki, "Nonstoichiometry and Defect Structure of the Perovskitetype Oxides $La_{1-x}Sr_xFeO_{3-{\delta}}$," J. Solid State Chem., 58 [2] 257-66 (1985). https://doi.org/10.1016/0022-4596(85)90243-9
  48. J. Mizusaki, Y. Mima, S. Yamauchi, and K. Fueki, "Nonstoichiometry of the Perovskite-type Oxides $La_{1-x}Sr_xCoO_{3-{\delta}}$," J. Solid State Chem., 80 [1] 102-111 (1989). https://doi.org/10.1016/0022-4596(89)90036-4
  49. Y. -L. Lee, K. Kleis, J. Rossmeisl, and D. Morgan, "Ab Initio Energetics of $LaBO_3$(001) (B = Mn, Fe, Co, and Ni) for Solid Oxide Fuel Cell Cathodes," Phys. Rev. B, 80 [22] 224101 (2009). https://doi.org/10.1103/PhysRevB.80.224101
  50. M. S. Islam, "Computer Modelling of Defects and Transport in Perovskite Oxides," Solid State Ionics, 154-155 75-85 (2002). https://doi.org/10.1016/S0167-2738(02)00466-6
  51. A. Jones and M. S. Islam, "Atomic-scale Insight into $LaFeO_3$ Perovskite: Defect Nanoclusters and Ion Migration," J. Phys. Chem. C, 112 [12] 4455-62 (2008). https://doi.org/10.1021/jp710463x
  52. J. A. Kilner and R. J. Brook, "A Study of Oxygen Ion Conductivity in Doped Non-stoichiometric Oxides," Solid State Ionics, 6 [3] 237-52 (1982). https://doi.org/10.1016/0167-2738(82)90045-5
  53. M. S. Islam, "Ionic Transport in $ABO_3$ Perovskite Oxides: A Computer Modelling Tour," J. Mater. Chem., 10 [4] 1027-38 (2000). https://doi.org/10.1039/a908425h
  54. T. Ishigaki, S. Yamauchi, J. Mizusaki, K. Kueki, and H. Tamura, "Tracer Diffusion Coefficient of Oxide Ions in $LaCoO_3$ Single Crystal," J. Solid State Chem., 54 [1] 100-7 (1984). https://doi.org/10.1016/0022-4596(84)90136-1
  55. T. Ishigaki, S. Yamauchi, K. Kishio, J. Mizusaki, and K. Fueki, "Diffusion of Oxide Ion Vacancies in Perovskite-type Oxides," J. Solid State Chem., 73 [1] 179-87 (1988). https://doi.org/10.1016/0022-4596(88)90067-9
  56. S. Carter, A. Selcuk, R. J. Chater, J. Kajda, J. A. Kilner, and B. C. H. Steele, "Oxygen Transport in Selected Nonstoichiometric Perovskite-structure Oxides," Solid State Ionics, 53-56 597-605 (1992). https://doi.org/10.1016/0167-2738(92)90435-R
  57. I. Yasuda and M. Hishinuma, "Electrical Conductivity and Chemical Diffusion Coefficient of Strontium-doped Lanthanum Manganites," J. Solid State Chem., 123 [2] 382-90 (1996). https://doi.org/10.1006/jssc.1996.0193
  58. Y. A. Mastrikov, R. Merkle, E. A. Kotomin, M. M. Kuklja, and J. Maier, "Formation and Migration of Oxygen Vacancies in $La_{1-x}Sr_xCo_{1-y}Fe_yO_{3-{\delta}}$ Perovskites: Insight from Ab Initio Calculations and Comparison with $Ba_{1-x}Sr_xCo_{1-y}Fe_yO_{3-{\delta}}$," Phys. Chem. Chem. Phys., 15 [3] 911-18 (2013). https://doi.org/10.1039/C2CP43557H
  59. V. V. Kharton, A. P. Viskup, D. M. Bochkov, E. N. Naumovich, and O. P. Reut, "Mixed Electronic and Ionic Conductivity of $LaCo(M)O_3$ (M = Ga, Cr, Fe or Ni): III. Diffusion of Oxygen through $LaCo_{1-x-y}Fe_xNi_yO_{3{\pm}{\delta}}$ Ceramics," Solid State Ionics, 110 [1-2] 61-68 (1998). https://doi.org/10.1016/S0167-2738(98)00117-9
  60. M. Zinkevich and F. Aldinger, "Thermodynamic Analysis of the Ternary La-Ni-O System," J. Alloys Compd., 375 [1-2] 147-61 (2004). https://doi.org/10.1016/j.jallcom.2003.11.138
  61. E. V. Tsipis, E. A. Kiselev, V. A. Kolotygin, J. C. Waerenborgh, V. A. Cherepanov, and V. V. Kharton, "Mixed Conductivity, Mössbauer Spectra and Thermal Expansion of $(La,Sr)(Fe,Ni)O_{3-{\delta}}$ Perovskites," Solid State Ionics, 179 [38] 2170-80 (2008). https://doi.org/10.1016/j.ssi.2008.07.017

Cited by

  1. vol.20, pp.28, 2018, https://doi.org/10.1039/C8CP02443J
  2. Oxygen Vacancy Defect Migration in Titanate Perovskite Surfaces: Effect of the A-Site Cations vol.122, pp.26, 2015, https://doi.org/10.1021/acs.jpcc.8b03322
  3. The surprisingly high activation barrier for oxygen-vacancy migration in oxygen-excess manganite perovskites vol.22, pp.25, 2015, https://doi.org/10.1039/d0cp01281e