Browse > Article
http://dx.doi.org/10.4191/kcers.2015.52.5.331

Effect of B-Cation Doping on Oxygen Vacancy Formation and Migration in LaBO3: A Density Functional Theory Study  

Kwon, Hyunguk (Department of Chemical Engineering, University of Seoul)
Park, Jinwoo (Graphene Research Institute and Department of Physics, Sejong University)
Kim, Byung-Kook (High Temperature Energy Materials Center, Korea Institute of Science and Technology)
Han, Jeong Woo (Department of Chemical Engineering, University of Seoul)
Publication Information
Abstract
$LaBO_3$ (B = Cr, Mn, Fe, Co, and Ni) perovskites, the most common perovskite-type mixed ionic-electronic conductors (MIECs), are promising candidates for intermediate-temperature solid oxide fuel cell (IT-SOFC) cathodes. The catalytic activity on MIEC-based cathodes is closely related to the bulk ionic conductivity. Doping B-site cations with other metals may be one way to enhance the ionic conductivity, which would also be sensitively influenced by the chemical composition of the dopants. Here, using density functional theory (DFT) calculations, we quantitatively assess the activation energies of bulk oxide ion diffusion in $LaBO_3$ perovskites with a wide range of combinations of B-site cations by calculating the oxygen vacancy formation and migration energies. Our results show that bulk oxide ion diffusion dominantly depends on oxygen vacancy formation energy rather than on the migration energy. As a result, we suggest that the late transition metal-based perovskites have relatively low oxygen vacancy formation energies, and thereby exhibit low activation energy barriers. Our results will provide useful insight into the design of new cathode materials with better performance.
Keywords
Solid oxide fuel cell cathode; Oxide ion transport; Oxygen vacancy formation; Oxygen vacancy migration; Density functional theory;
Citations & Related Records
연도 인용수 순위
  • Reference
1 N. Q. Minh, "Ceramic Fuel Cells," J. Am. Ceram. Soc., 76 [3] 563-88 (1993).   DOI
2 B. C. H. Steele and A. Heinzel, "Materials for Fuel-cell Technologies," Nature, 414 [6861] 345-52 (2001).   DOI
3 S. M. Haile, "Fuel Cell Materials and Components," Acta Mater., 51 [19] 5981-6000 (2003).   DOI
4 E. D. Wachsman and K. T. Lee, "Lowering the Temperature of Solid Oxide Fuel Cells," Science, 334 [6058] 935-39 (2011).   DOI   ScienceOn
5 M. M. Kuklja, E. A. Kotomin, R. Merkle, Y. A. Mastrikov, and J. Maier, "Combined Theoretical and Experimental Analysis of Processes Determining Cathode Performance in Solid Oxide Fuel Cells," Phys. Chem. Chem. Phys., 15 [15] 5443-71 (2013).   DOI
6 Y. A. Mastrikov, M. M. Kuklja, E. A. Kotomin, and J. Maier, "First-principles Modelling of Complex Perovskite $(Ba_{1-x}Sr_x)(Co_{1-y}Fe_y)O_{3-{\delta}}$ for Solid Oxide Fuel Cell and Gas Separation Membrane Applications," Energy Environ. Sci., 3 [10] 1544-50 (2010).   DOI
7 A. B. Munoz-Garcia, D. E. Bugaris, M. Pavone, J. P. Hodges, A. Huq, F. Chen, H. -C. zur Loye, and E. A. Carter, "Unveiling Structure-property Relationships in $Sr_2Fe_{1.5}Mo_{0.5}O_{6-{\delta}}$, an Electrode Material for Symmetric Solid Oxide Fuel Cells," J. Am. Chem. Soc., 134 [15] 6826-33 (2012).   DOI
8 Z. Wang, R. Peng, W. Zhang, X. Wu, C. Xia, and Y. Lu, "Oxygen Reduction and Transport on the $La_{1-x}Sr_xCo_{1-y}Fe_yO_{3-{\delta}}$ Cathode in Solid Oxide Fuel Cells: A First-principles Study," J. Mater. Chem. A, 1 [41] 12932-40 (2013).   DOI
9 S. B. Adler, "Factors Governing Oxygen Reduction in Solid Oxide Fuel Cell Cathodes," Chem. Rev., 104 4791-844 (2004).   DOI
10 S. B. Adler, "Electrode Kinetics of Porous Mixed-conducting Oxygen Electrodes," J. Electrochem. Soc., 143 [11] 3554 (1996).   DOI
11 S. B. Adler, "Mechanism and Kinetics of Oxygen Reduction on Porous $La_{1-x}Sr_xCoO_{3-{\delta}}$ Electrodes," Solid State Ionics, 111 [1-2] 125-34 (1998).   DOI
12 S. Choi, S. Yoo, J. Kim, S. Park, A. Jun, S. Sengodan, J. Kim, J. Shin, H. Y. Jeong, Y. -M. Choi, G. Kim, and M. Liu, "Highly Efficient and Robust Cathode Materials for Lowtemperature Solid Oxide Fuel Cells: $PrBa_{0.5}Sr_{0.5}Co_{2-x}Fe_xO_{5+{\delta}}$," Sci. Rep., 3 (2013).
13 S. Bao, C. Ma, G. Chen, X. Xu, E. Enriquez, C. Chen, Y. Zhang, J. L. Bettis Jr., M. -H. Whangbo, C. Dong, and Q. Zhang, "Ultrafast Atomic Layer-by-layer Oxygen Vacancyexchange Diffusion in Double-perovskite $LnBaCo_2O_{5.5+{\delta}}$ Thin Films," Sci. Rep., 4 4726 (2014).
14 C. N. Munnings, S. J. Skinner, G. Amow, P. S. Whitfield, and I. J. Davidson, "Oxygen Transport in the $La_2Ni_{1-x}Co_xO_{4+{\delta}}$ System," Solid State Ionics, 176 [23-24] 1895-901 (2005).   DOI
15 E. Boehm, J. -M. Bassat, P. Dordor, F. Mauvy, J. -C. Grenier, and Ph. Stevens, "Oxygen Diffusion and Transport Properties in Non-stoichiometric $Ln_{2-x}NiO_{4+{\delta}}$ Oxides," Solid State Ionics, 176 [37-38] 2717-25 (2005).   DOI   ScienceOn
16 M. Kubicek, Z. Cai, W. Ma, B. Yildiz, H. Hutter, and J. Fleig, "Tensile Lattice Strain Accelerates Oxygen Surface Exchange and Diffusion in $La_{1-x}Sr_xCoO_{3-{\delta}}$ Thin Films," ACS Nano, 7 [4] 3276-86 (2013).   DOI
17 J. W. Han and B. Yildiz, "Enhanced One Dimensional Mobility of Oxygen on Strained $LaCoO_3$(001) Surface," J. Mater. Chem., 21 [47] 18983 (2011).   DOI
18 H. Jalili, J. W. Han, Y. Kuru, Z. Cai, and B. Yildiz, "New Insights into the Strain Coupling to Surface Chemistry, Electronic Structure, and Reactivity of $La_{0.7}Sr_{0.3}MnO_3$," J. Phys. Chem. Lett., 2 [7] 801-7 (2011).   DOI
19 Z. Cai, Y. Kuru, J. W. Han, Y. Chen, and B. Yildiz, "Surface Electronic Structure Transitions at High Temperature on Perovskite Oxides: The Case of Strained $La_{0.8}Sr_{0.2}CoO_3$ Thin Films," J. Am. Chem. Soc., 133 [44] 17696-704 (2011).   DOI
20 J. L. M. Rupp, E. Fabbri, D. Marrocchelli, J. W. Han, D. Chen, E. Traversa, H. L. Tuller, and B. Yildiz, "Scalable Oxygen-ion Transport Kinetics in Metal-oxide Films: Impact of Thermally Induced Lattice Compaction in Acceptor Doped Ceria Films," Adv. Funct. Mater., 24 [11] 1562-74 (2014).   DOI
21 X. Yue, A. Yan, M. Zhang, L. Liu, Y. Dong, and M. Chen, "Investigation on Scandium-Doped Manganate $La_{0.8}Sr_{0.2}Mn_{1-x}Sc_xO_{3-{\delta}}$ Cathode for Intermediate Temperature Solid Oxide Fuel Cells," J. Power Sources, 185 [2] 691-97 (2008).   DOI
22 V. Dusastre and J. A. Kilner, "Optimisation of Composite Cathodes for Intermediate Temperature SOFC Applications," Solid State Ionics, 126 [1-2] 163-74 (1999).   DOI   ScienceOn
23 B. C. H. Steele, "Survey of Materials Selection for Ceramic Fuel Cells II. Cathodes and Anodes," Solid State Ionics, 86-88 1223-34 (1996).   DOI
24 A. B. Munoz-Garcia, M. Pavone, A. M. Ritzmann, and E. A. Carter, "Oxide Ion Transport in $Sr_2Fe_{1.5}Mo_{0.5}O_{6-{\delta}}$, A Mixed Ion-electron Conductor: New Insights from First Principles Modeling," Phys. Chem. Chem. Phys., 15 [17] 6250-59 (2013).   DOI
25 H. L. Tuller, "Semiconduction and Mixed Ionic-electronic Conduction in Nonstoichiometric Oxides: Impact and Control," Solid State Ionics, 94 [1-4] 63-74 (1997).   DOI
26 M. Cherry, M. S. Islam, and C. R. A. Catlow, "Oxygen Ion Migration in Perovskite-type Oxides," J. Solid State Chem., 118 [1] 125-32 (1995).   DOI
27 A. M. Ritzmann, A. B. Muñoz-García, M. Pavone, J. A. Keith, and E. A. Carter, "Ab Initio DFT+U Analysis of Oxygen Vacancy Formation and Migration in $La_{1-x}Sr_xFeO_{3-{\delta}}$ (x = 0, 0.25, 0.50)," Chem. Mater., 25 [15] 3011-19 (2013).   DOI
28 A. B. Munoz-Garcia, A. M. Ritzmann, M. Pavone, J. A. Keith, and E. A. Carter, "Oxygen Transport in Perovskitetype Solid Oxide Fuel Cell Materials: Insights from Quantum Mechanics," Acc. Chem. Res., 47 [11] 3340-48 (2014).   DOI
29 G. Kresse and J. Furthmuller, "Efficient Iterative Schemes for Ab Initio Total-energy Calculations Using a Plane-wave Basis Set," Phys. Rev. B, 54 [16] 11169-86 (1996).   DOI
30 G. Kresse and J. Furthmüller, "Efficiency of Ab-initio Total Energy Calculations for Metals and Semiconductors Using a Plane-wave Basis Set," Comput. Mater. Sci., 6 [1] 15-50 (1996).   DOI
31 J. P. Perdew, K. Burke, and M. Ernzerhof, "Generalized Gradient Approximation Made Simple," Phys. Rev. Lett., 77 [18] 3865-68 (1996).   DOI
32 E. A. Carter, "Challenges in Modeling Materials Properties without Experimental Input," Science, 321 [5890] 800-3 (2008).   DOI
33 Y. -L. Lee and D. Morgan, "Ab Initio Defect Energetics of Perovskite (001) Surfaces for Solid Oxide Fuel Cells: A Comparative Study of $LaMnO_3$ versus $SrTiO_3$ and $LaAlO_3$," Phys. Rev. B, 91 [19] 195430 (2015).   DOI
34 S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, and A. P. Sutton, "Electron-energy-loss Spectra and the Structural Stability of Nickel Oxide: An LSDA+U Study," Phys. Rev. B, 57 [3] 1505-9 (1998).   DOI
35 L. Wang, T. Maxisch, and G. Ceder, "Oxidation Energies of Transition Metal Oxides within the GGA+U Framework," Phys. Rev. B, 73 [19] 195107 (2006).   DOI
36 H. J. Monkhorst and J. D. Pack, "Special Points for Brillouin- zone Integrations," Phys. Rev. B, 13 [12] 5188-92 (1976).   DOI
37 T. Mayeshiba and D. Morgan, "Strain Effects on Oxygen Migration in Perovskites," Phys. Chem. Chem. Phys., 17 [4] 2715-21 (2015).   DOI
38 Y. -L. Lee, J. Kleis, J. Rossmeisl, Y. Shao-Horn, and D. Morgan, "Prediction of Solid Oxide Fuel Cell Cathode Activity with First-principles Descriptors," Energy Environ. Sci., 4 [10] 3966-70 (2011).   DOI
39 J. Ko, H. Kwon, H. Kang, B. -K. Kim, and J. W. Han, "Universality in Surface Mixing Rule of Adsorption Strength for Small Adsorbates on Binary Transition Metal Alloys," Phys. Chem. Chem. Phys., 17 [5] 3123-30 (2015).   DOI
40 M. Pavone, A. M. Ritzmann, and E. A. Carter, "Quantummechanics- based Design Principles for Solid Oxide Fuel Cell Cathode Materials," Energy Environ. Sci., 4 [12] 4933- 37 (2011).   DOI
41 A. M. Deml, V. Stevanović, C. L. Muhich, C. B. Musgrave, and O'Hayre "Oxide Enthalpy of Formation and Band Gap Energy as Accurate Descriptors of Oxygen Vacancy Formation Energetics," Energy Environ. Sci., 7 [6] 1996-2004 (2014).   DOI
42 J. H. Kuo, H. U. Anderson, and D. M. Sparlin, "Oxidationreduction Behavior of Undoped and Sr-Doped $LaMnO_3$ Nonstoichiometry and Defect Structure," J. Solid State Chem., 83 [1] 52-60 (1989).   DOI
43 G. Henkelman, B. P. Uberuaga, and H. Jonsson, "A Climbing Image Nudged Elastic Band Method for Finding Saddle Points and Minimum Energy Paths," J. Chem. Phys., 113 [22] 9901 (2000).   DOI
44 D. Sheppard, R. Terrell, and G. Henkelman, "Optimization Methods for Finding Minimum Energy Paths," J. Chem. Phys., 128 [13] 134106 (2008).   DOI
45 J. W. Han and B. Yildiz, "Mechanism for Enhanced Oxygen Reduction Kinetics at the $(La,Sr)CoO_{3-{\delta}}/(La,Sr)_2CoO_{4+{\delta}}$ Hetero- interface," Energy Environ. Sci., 5 [9] 8598-607 (2012).   DOI
46 J. Nowotny and M. Rekas, "Defect Chemistry of (La,Sr) $MnO_3$," J. Am. Ceram. Soc., 81 [1] 67-80 (1998).   DOI
47 J. Mizusaki, M. Yoshihiro, S. Yamauchi, and K. Fueki, "Nonstoichiometry and Defect Structure of the Perovskitetype Oxides $La_{1-x}Sr_xFeO_{3-{\delta}}$," J. Solid State Chem., 58 [2] 257-66 (1985).   DOI
48 J. Mizusaki, Y. Mima, S. Yamauchi, and K. Fueki, "Nonstoichiometry of the Perovskite-type Oxides $La_{1-x}Sr_xCoO_{3-{\delta}}$," J. Solid State Chem., 80 [1] 102-111 (1989).   DOI
49 Y. -L. Lee, K. Kleis, J. Rossmeisl, and D. Morgan, "Ab Initio Energetics of $LaBO_3$(001) (B = Mn, Fe, Co, and Ni) for Solid Oxide Fuel Cell Cathodes," Phys. Rev. B, 80 [22] 224101 (2009).   DOI
50 M. S. Islam, "Computer Modelling of Defects and Transport in Perovskite Oxides," Solid State Ionics, 154-155 75-85 (2002).   DOI
51 T. Ishigaki, S. Yamauchi, J. Mizusaki, K. Kueki, and H. Tamura, "Tracer Diffusion Coefficient of Oxide Ions in $LaCoO_3$ Single Crystal," J. Solid State Chem., 54 [1] 100-7 (1984).   DOI
52 A. Jones and M. S. Islam, "Atomic-scale Insight into $LaFeO_3$ Perovskite: Defect Nanoclusters and Ion Migration," J. Phys. Chem. C, 112 [12] 4455-62 (2008).   DOI
53 J. A. Kilner and R. J. Brook, "A Study of Oxygen Ion Conductivity in Doped Non-stoichiometric Oxides," Solid State Ionics, 6 [3] 237-52 (1982).   DOI
54 M. S. Islam, "Ionic Transport in $ABO_3$ Perovskite Oxides: A Computer Modelling Tour," J. Mater. Chem., 10 [4] 1027-38 (2000).   DOI
55 T. Ishigaki, S. Yamauchi, K. Kishio, J. Mizusaki, and K. Fueki, "Diffusion of Oxide Ion Vacancies in Perovskite-type Oxides," J. Solid State Chem., 73 [1] 179-87 (1988).   DOI
56 S. Carter, A. Selcuk, R. J. Chater, J. Kajda, J. A. Kilner, and B. C. H. Steele, "Oxygen Transport in Selected Nonstoichiometric Perovskite-structure Oxides," Solid State Ionics, 53-56 597-605 (1992).   DOI
57 I. Yasuda and M. Hishinuma, "Electrical Conductivity and Chemical Diffusion Coefficient of Strontium-doped Lanthanum Manganites," J. Solid State Chem., 123 [2] 382-90 (1996).   DOI
58 Y. A. Mastrikov, R. Merkle, E. A. Kotomin, M. M. Kuklja, and J. Maier, "Formation and Migration of Oxygen Vacancies in $La_{1-x}Sr_xCo_{1-y}Fe_yO_{3-{\delta}}$ Perovskites: Insight from Ab Initio Calculations and Comparison with $Ba_{1-x}Sr_xCo_{1-y}Fe_yO_{3-{\delta}}$," Phys. Chem. Chem. Phys., 15 [3] 911-18 (2013).   DOI
59 M. Zinkevich and F. Aldinger, "Thermodynamic Analysis of the Ternary La-Ni-O System," J. Alloys Compd., 375 [1-2] 147-61 (2004).   DOI
60 V. V. Kharton, A. P. Viskup, D. M. Bochkov, E. N. Naumovich, and O. P. Reut, "Mixed Electronic and Ionic Conductivity of $LaCo(M)O_3$ (M = Ga, Cr, Fe or Ni): III. Diffusion of Oxygen through $LaCo_{1-x-y}Fe_xNi_yO_{3{\pm}{\delta}}$ Ceramics," Solid State Ionics, 110 [1-2] 61-68 (1998).   DOI
61 E. V. Tsipis, E. A. Kiselev, V. A. Kolotygin, J. C. Waerenborgh, V. A. Cherepanov, and V. V. Kharton, "Mixed Conductivity, Mössbauer Spectra and Thermal Expansion of $(La,Sr)(Fe,Ni)O_{3-{\delta}}$ Perovskites," Solid State Ionics, 179 [38] 2170-80 (2008).   DOI