• Title/Summary/Keyword: Ion beam machining

Search Result 37, Processing Time 0.027 seconds

Machining of The Micro Nozzle Using Focused Ion Beam (집속이온빔을 이용한 마이크로 노즐의 제작)

  • Kim G.H.;Min B.K.;Lee S.J.;Park C.W.;Lee J.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1194-1197
    • /
    • 2005
  • Micro nozzle is employed as a dynamic passive valve in micro fluidic devices. Micro nozzle array is used in micro droplet generation in bio-medical applications and propulsion device for actuating satellite and aerospace ship in vacuum environments. Aperture angle and the channel length of the micro nozzle affect its retification efficiency, and thus it is needed to produce micro nozzle precisely. MEMS process has a limit on making a micro nozzle with high-aspect ratio. Reactive ion etching process can make high-aspect ratio structure, but it is difficult to make the complex shape. Focused ion beam deposition has advantage in machining of three-dimensional complex structures of sub-micron size. Moreover, it is possible to monitor machining process and to correct defected part at simultaneously. In this study, focused ion beam deposition was applied to micro nozzle production.

  • PDF

A Study on The Surface Roughness Of Metal Workpieces Machined by Ion Sputtering (이온 스파터 가공에 의하 금속표면의 표면거칠기에 관한 연구)

  • 한응교;노병옥;박재민
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.3
    • /
    • pp.747-754
    • /
    • 1990
  • Since Ion sputter machining can perform removing processing in atom or molecule units in vacuum state, it has the merit that high precision processing is possible. In this study, therefore, the effect of incidence ion beam is certified to processing amount and surface roughness when longtimed processing is applied. As a result, processing amount is made almost constant with time and the best processing condition is achieved when the incidencial angle of ion is 55.deg.. In addition, processing time for the good surface roughness is different respectively to the quality of material and longtimed processing has some defect for achieving good surface roughness.

Analysis on FIB-Sputtering Process using Taguchi Method (다구찌 기법을 이용한 FIB-Sputtering 가공 특성 분석)

  • Lee, Seok-Woo;Choi, Byoung-Yeol;Kang, Eun-Goo;Hong, Won-Pyo;Choi, Hon-Zong
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.6
    • /
    • pp.71-75
    • /
    • 2006
  • The application of focused ion beam (FIB) technology in micro/nano machining has become increasingly popular. Its usage in micro/nano machining has advantages over contemporary photolithography or other micro/nano machining technologies such as small feature resolution, the ability to process without masks and being accommodating for a variety of materials and geometries. The target of this paper is the analysis of FIB sputtering process according to tilt angle, dwell time and overlap for application of 3D micro and pattern fabrication and to find the effective beam scanning conditions using Taguchi method. Therefore we make the conclusions that tilt angle is dominant parameter for sputtering yield. Burr size is reduced as tilt angle is higher.

Alignment Method of Ion Beam Axis in Focused Ion Beam System (집속이온빔장치에서의 이온빔축 얼라인먼트)

  • Park, Cheol-Woo;Lee, Jong-Hang;Kang, Seung-Oun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.9 s.252
    • /
    • pp.1166-1172
    • /
    • 2006
  • This paper describes an alignment method of the ion column which is used for a focused-ion-beam machining system. The alignment parameters for mechanical and electrical components are introduced, and also sample images are used for evaluating the experiments. The experimental results show that geometrical positions of mechanical components have an influence on the quality of emitted ion beam. In addition, we can successfully align the traveling axis of ions by using mechanical and electrical methods.

The analysis of sputtering characteristics using Focused Ion Beam according to Focal Length (FIB 가공 공정 특성 분석)

  • Choi B.Y.;Choi W.C.;Kang E.G.;Hong W.P;Lee S.W.;Choi H.Z.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1518-1521
    • /
    • 2005
  • The application of focused ion beam (FIB) technology in micro/nano machining has become increasingly popular. Its usage in micro/nano machining has advantages over contemporary photolithography or other micro/nano machining technologies such as small feature resolution, the ability to process without masks and being accommodating for a variety of materials and geometries This paper focus to apply the sputtering technology accumulated by experiments to 3d structure fabrication with high resolution. Therefore some verifications and discussions of the characteristics of FIB sputtering results according to focal length were described in this paper. And we suggested the definition of rectangular pattern profile and made the verifications of sputtering results based on definition of it.

  • PDF

Beam Focusing Performance of Electrostatic Lens using SIMION Simulator (SIMION 시뮬레이터를 이용한 정전렌즈의 빔 집속 성능)

  • Oh, Maeng-Ho;Jeong, In-Sung;Lee, Jong-Hang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.4
    • /
    • pp.128-133
    • /
    • 2009
  • Focused-ion-beam (FIB) system is capable of both machining and measuring in nano-scale; hence nano-scale focusing quality is important. This paper investigates design parameters of two electrostatic lenses in order to achieve the best ion beam focusing performance. Commercial SIMION simulator is used to optimize the dimensions of the condenser and objective lenses and investigate the influence of assembly error on focusing quality The simulation results show that the beam focusing quality is not influenced by angle deviation within ${\pm}0.02\;deg$ and geometrical eccentricity within ${\pm}50$ micrometers.