• Title/Summary/Keyword: Ion Implantation

Search Result 507, Processing Time 0.021 seconds

Effects of Pretreatments of PET Substrate on the Adhesion of Copper Films Prepared by a Room Temperature ECR-MOCVD Method (PET 기질의 전처리효과가 상온 ECR 화학증착법에 의해 증착된 구리박막의 계면접착력에 미치는 영향)

  • Hyun Jin;Jeon Bupju;Byun Dongjin;Lee Joongkee
    • Korean Journal of Materials Research
    • /
    • v.14 no.3
    • /
    • pp.203-210
    • /
    • 2004
  • Effects of various pretreatments on the adhesion of copper-coated polymer films were investigated. Copper-coated polymer films were prepared by an electron cyclotron resonance-metal organic chemical vapor deposition (ECR-MOCVD) coupled with a DC bias system at room temperature. PET(polyethylene terephthalate) film was employed as a substrate material and it was pretreated by industrially feasible methods such as chromic acid, sand-blasting, oxygen plasma and ion-implantation treatment. Surface characterization of the copper-coated polymer film was carried out by AFM(Atomic Force Microscopy) and FESEM(Field Emission Scanning Electron Microscopy). Surface energy was calculated by based on the value of the contact angle measured. The adhesion of copper/PET films was determined by a pull-off test according to ASTM D-5179. It was found that suitable pretreatment of the PET substrate was required for obtaining good adhesion property between copper films and the substrate. In this study the highest adhesion was observed in sand-blasting, and then followed by those of acid and oxygen plasma treatment. However, the effect of surface energy was insignificant in our experimental range. This is probably due to compensating the difference in surface energy from various pretreatments by exposing substrate to ECR plasma for 5 min or longer at the early stage of the copper deposition. Therefore, it can be concluded that surface roughness of the polymer substrate plays an important role to determine the adhesion of copper-coated polymer for the deposition of copper by ECR-MOCVD.

Analysis of Subthreshold Swing for Doping Distribution Function of Asymmetric Double Gate MOSFET (도핑분포함수에 따른 비대칭 MOSFET의 문턱전압이하 스윙 분석)

  • Jung, Hakkee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.5
    • /
    • pp.1143-1148
    • /
    • 2014
  • This paper has analyzed the change of subthreshold swing for doping distribution function of asymmetric double gate(DG) MOSFET. The basic factors to determine the characteristics of DGMOSFET are dimensions of channel, i.e. channel length and channel thickness, and doping distribution function. The doping distributions are determined by ion implantation used for channel doping, and follow Gaussian distribution function. Gaussian function has been used as carrier distribution in solving the Poisson's equation. Since the Gaussian function is exactly not symmetric for top and bottome gates, the subthreshold swings are greatly changed for channel length and thickness, and the voltages of top and bottom gates for asymmetric double gate MOSFET. The deviation of subthreshold swings has been investigated for parameters of Gaussian distribution function such as projected range and standard projected deviation in this paper. As a result, we know the subthreshold swing is greatly changed for doping profiles and bias voltage.

Effect of Pore Structures of a Ti-49.5Ni (at%) Alloy on Bone Cell Adhesion (Ti-49.5Ni (at%)합금의 다공성 구조가 뼈 세포 흡착에 미치는 영향)

  • Im, Yeon-Min;Choi, Jung-Il;Khang, Dong-Woo;Nam, Tae-Hyun
    • Korean Journal of Materials Research
    • /
    • v.22 no.2
    • /
    • pp.66-70
    • /
    • 2012
  • Ti-Ni alloys are widely used in numerous biomedical applications (e.g., orthodontics, cardiovascular science, orthopaedics) due to their distinctive thermomechanical and mechanical properties, such as the shape memory effect, superelasticity and low elastic modulus. In order to increase the biocompatibility of Ti-Ni alloys, many surface modification techniques, such as the sol-gel technique, plasma immersion ion implantation (PIII), laser surface melting, plasma spraying, and chemical vapor deposition, have been employed. In this study, a Ti-49.5Ni (at%) alloy was electrochemically etched in 1M $H_2SO_4$+ X (1.5, 2.0, 2.5) wt% HF electrolytes to modify the surface morphology. The morphology, element distribution, crystal structure, roughness and energy of the surface were investigated by scanning electron microscopy (SEM), energy-dispersive Xray spectrometry (EDS), X-ray diffractometry (XRD), atomic force microscopy (AFM) and contact angle analysis. Micro-sized pores were formed on the Ti-49.5Ni (at%) alloy surface by electrochemical etching with 1M $H_2SO_4$+ X (1.5, 2.0, 2.5) wt% HF. The volume fractions of the pores were increased by increasing the concentration of the HF electrolytes. Depending on the HF concentration, different pore sizes, heights, surface roughness levels, and surface energy levels were obtained. To investigate the osteoblast adhesion of the electrochemically etched Ti-49.5Ni (at%) alloy, a MTT test was performed. The degree of osteoblast adhesion was increased at a high concentration of HF-treated surface structures.

A study on the lattice defects in $LiNbO_3$ single crystal by crystal by $OH^-$ absorption band ($OH^-$ 흡수밴드에 의한 $LiNbO_3$ 단결정의 격자결함에 관한 연구)

  • 조용석;강길영;윤종규
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.3
    • /
    • pp.401-406
    • /
    • 1998
  • For the applications in optical waveguides and devices, LiNbO_3$ single crystals need to overcome the weakness of optical damage due to the inhomogeneities of laser-induced refractive index. This problem can be solved by doping of Mg in LiNbO_3$ and proton exchange of LiNbO_3$. In this study, to understand the mechanism of optical damage resistance in LiNbO_3$, the changes of lattice defects in LiNbO_3$ caused by MgO doping and acid treatment were observed indirectly by $OH^-$ absorption bands using a FT-IR spectrophotometer. The effect of lattice defects on temperature, heat-treatment and polishing were also investigated. It is shown that MgO doping increases optical damage resistance by generating the defects of $Mg_{Nb}^{2+}$ in the lattice of LiNbO_3$, and that proton exchange by implantation of $H^+$ ion in the hexagonally closest packed oxygen layers on the surface of LiNbO_3$, makes lattice defects, which diffuse into the crystal after heat-treatment above $400^{\circ}C$.

  • PDF

Optically Controlled Silicon MESFET Fabrication and Characterizations for Optical Modulator/Demodulator

  • Chattopadhyay, S.N.;Overton, C.B.;Vetter, S.;Azadeh, M.;Olson, B.H.;Naga, N. El
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.10 no.3
    • /
    • pp.213-224
    • /
    • 2010
  • An optically controlled silicon MESFET (OPFET) was fabricated by diffusion process to enhance the quantum efficiency, which is the most important optoelectronic device performance usually affected by ion implantation process due to large number of process induced defects. The desired impurity distribution profile and the junction depth were obtained solely with diffusion, and etching processes monitored by atomic force microscope, spreading resistance profiling and C-V measurements. With this approach fabrication induced defects are reduced, leading to significantly improved performance. The fabricated OPFET devices showed proper I-V characteristics with desired pinch-off voltage and threshold voltage for normally-on devices. The peak photoresponsivity was obtained at 620 nm wavelength and the extracted external quantum efficiency from the photoresponse plot was found to be approximately 87.9%. This result is evidence of enhancement of device quantum efficiency fabricated by the diffusion process. It also supports the fact that the diffusion process is an extremely suitable process for fabrication of high performance optoelectronic devices. The maximum gain of OPFET at optical modulated signal was obtained at the frequency of 1 MHz with rise time and fall time approximately of 480 nS. The extracted transconductance shows the possible potential of device speed performance improvements for shorter gate length. The results support the use of a diffusion process for fabrication of high performance optoelectronic devices.

Threshold Voltage Shift for Doping Profile of Asymmetric Double Gate MOSFET (도핑분포함수에 따른 비대칭 이중게이트 MOSFET의 문턱전압이동현상)

  • Jung, Hakkee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.4
    • /
    • pp.903-908
    • /
    • 2015
  • This paper has analyzed threshold voltage shift for doping profile of asymmetric double gate(DG) MOSFET. Ion implantation is usually used in process of doping for semiconductor device and doping profile becomes Gaussian distribution. Gaussian distribution function is changed for projected range and standard projected deviation, and influenced on transport characteristics. Therefore, doping profile in channel of asymmetric DGMOSFET is affected in threshold voltage. Threshold voltage is minimum gate voltage to operate transistor, and defined as top gate voltage when drain current is $0.1{\mu}A$ per unit width. The analytical potential distribution of series form is derived from Poisson's equation to obtain threshold voltage. As a result, threshold voltage is greatly changed by doping profile in high doping range, and the shift of threshold voltage due to projected range and standard projected deviation significantly appears for bottom gate voltage in the region of high doping concentration.

Magnetic Field-Assisted, Nickel-Induced Crystallization of Amorphous Silicon Thin Film

  • Moon, Sunwoo;Kim, Kyeonghun;Kim, Sungmin;Jang, Jinhyeok;Lee, Seungmin;Kim, Jung-Su;Kim, Donghwan;Han, Seung-Hee
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.313-313
    • /
    • 2013
  • For high-performance TFT (Thin film transistor), poly-crystalline semiconductor thin film with low resistivity and high hall carrier mobility is necessary. But, conventional SPC (Solid phase crystallization) process has disadvantages in fabrication such as long annealing time in high temperature or using very expensive Excimer laser. On the contrary, MIC (Metal-induced crystallization) process enables semiconductor thin film crystallization at lower temperature in short annealing time. But, it has been known that the poly-crystalline semiconductor thin film fabricated by MIC methods, has low hall mobility due to the residual metals after crystallization process. In this study, Ni metal was shallow implanted using PIII&D (Plasma Immersion Ion Implantation & Deposition) technique instead of depositing Ni layer to reduce the Ni contamination after annealing. In addition, the effect of external magnetic field during annealing was studied to enhance the amorphous silicon thin film crystallization process. Various thin film analytical techniques such as XRD (X-Ray Diffraction), Raman spectroscopy, and XPS (X-ray Photoelectron Spectroscopy), Hall mobility measurement system were used to investigate the structure and composition of silicon thin film samples.

  • PDF

Fabrication and characterization of the SiGe HBTs using an RPCVD (RPCVD를 이용한 실리콘 게르마늄 이종 접합 바이폴라 트랜지스터 제작 및 특성 분석)

  • 한태현;서광열
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.8
    • /
    • pp.823-829
    • /
    • 2004
  • In this paper, non-self-aligned SiGe HBTs with ${f}_\tau$ and${f}_max $above 50 GHz have been fabricated using an RPCVD(Reduced Pressure Chemical Vapor Deposition) system for wireless applications. In the proposed structure, in-situ boron doped selective epitaxial growth(BDSEG) and TiSi$_2$ were used for the base electrode to reduce base resistance and in-situ phosphorus doped polysilicon was used for the emitter electrode to reduce emitter resistance. SiGe base profiles and collector design methodology to increase ${f}_\tau$ and${f}_max $ are discussed in detail. Two SiGe HBTs with the collector-emitter breakdown voltages ${BV}_CEO$ of 3 V and 6 V were fabricated using SIC(selective ion-implanted collector) implantation. Fabricated SiGe HBTs have a current gain of 265 ∼ 285 and Early voltage of 102 ∼ 120 V, respectively. For the $1\times{8}_\mu{m}^2$ emitter, a SiGe HBT with ${BV}_CEO$= 6 V shows a cut-off frequency, ${f}_\tau$of 24.3 GHz and a maximum oscillation frequency, ${f}_max $of 47.6 GHz at $I_c$of 3.7 mA and$V_CE$ of 4 V. A SiGe HBT with ${BV}_CEO$ = 3 V shows ${f}_\tau$of 50.8 GHz and ${f}_max $ of 52.2 GHz at $I_c$ of 14.7 mA and $V_CE$ of 2 V.

Analysis of a Novel Self-Aligned ESD MOSFET having Reduced Hot-Carrier Effects (Hot-Carrier 현상을 줄인 새로운 구조의 자기-정렬된 ESD MOSFET의 분석)

  • 김경환;장민우;최우영
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.5
    • /
    • pp.21-28
    • /
    • 1999
  • A new method of making high speed self-aligned ESD (Elevated Source/Drain) MOSFET is proposed. Different from the conventional LDD (Lightly-Doped Drain) structure, the proposed ESD structure needs only one ion implantation step for the source/drain junctions, and makes it possible to modify the depth of the recessed channel by use of dry etching process. This structure alleviates hot-carrier stress by use of removable nitride sidewall spacers. Furthermore, the inverted sidewall spacers are used as a self-aligning mask to solve the self-align problem. Simulation results show that the impact ionization rate ($I_{SUB}/I_{D}$) is reduced and DIBL (Drain Induced Barrier Lowering) characteristics are improved by proper design of the structure parameters such as channel depth and sidewall spacer width. In addition, the use of removable nitride sidewall spacers also enhances hot-carrier characteristics by reducing the peak lateral electric field in the channel.

  • PDF

The Silicon Type Load Cell with SUS630 Diaphragm (SUS630 다이아프램을 이용한 반도체식 로드셀)

  • Moon, Young-Soon;Lee, Seon-Gil;Ryu, Sang-Hyuk;Choi, Sie-Young
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.213-218
    • /
    • 2011
  • The load cell is a force sensor and a transducer that is used to convert a physical force into a electrical signal for weighing equipment. Most conventional load cells are widely used a metal foil strain gauge for sensing element when force being applied spring element in order to converts the deformation to electrical signals. The sensitivity of a load cell is limited by its low gauge factor, hysteresis and creep. But silicon-based sensors perform with higher reliability. This paper presents the basic design and development of the silicon type load cell with an SUS630 diaphragm. The load cell consists of two parts the silicon strain gauge and the SUS630 structure with diaphragm. Structure analysis of load cell was researched by theory to optimize the load cell diaphragm design and to determine the position of peizoresistors on a silicon strain gauge. The piezo-resistors are integrated in the four points of silicon strain gauge processed by ion implantation. The thickness of the silicon strain gauge was polished by CMP under 100 ${\mu}M$. The 10 mm diameter SUS630 diaphragm was designed for loads up to 10 kg with 300 ${\mu}M$ of diaphragm thickness. The load cell was successfully tested, the variation of ${\Delta}$R(%) of four points on the silicon strain gauge is good linearity properties and sensitivity.