• Title/Summary/Keyword: Inverter frequency

Search Result 1,438, Processing Time 0.029 seconds

Current Controlled PWM for Multilevel Voltage-Source Inverters with Variable and Constant Switching Frequency Regulation Techniques: A Review

  • Gawande, S.P.;Ramteke, M.R.
    • Journal of Power Electronics
    • /
    • v.14 no.2
    • /
    • pp.302-314
    • /
    • 2014
  • Due to advancements in power electronics and inverter topologies, the current controlled multilevel voltage-source pulse width modulated (PWM) inverter is usually preferred for accurate control, quick response and high dynamic performance. A multilevel topology approach is found to be best suited for overcoming many problems arising from the use of high power converters. This paper presents a comprehensive review and comparative study of several current control (CC) techniques for multilevel inverters with a special emphasis on various approaches of the hysteresis current controller. Since the hysteresis CC technique poses a problem of variable switching frequency, a ramp-comparator controller and a predictive controller to attain constant switching frequency are described along with its quantitative comparison. Furthermore, various methods have been reviewed to achieve hysteresis current control PWM with constant switching frequency operation. This paper complies various guidelines to choose a particular method suitable for application at a given power level, switching frequency and dynamic response.

A study on Characteristics analysis of time sharing type high frequency resonant inverter using a Phase-Shift (Phase-Shift를 이용한 시분할방식 고주파 공진 인버터의 특성 해석에 관한 연구)

  • Cho, G.P.;Lee, E.W.;Bae, Y.H.;Yoon, S.H.;Kim, J.K.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.1168-1170
    • /
    • 2000
  • A half bridge time sharing type high frequency resonant inverter to give VVVF function in the inverter used as power source of induction heating at high frequency is presented in this paper, this paper also realize the output control of independence irrespective of the switching frequency using Phase-Shift. The analysis of the proposed circuit is generally described by using the normalized parameters. Also, the principle of basic operation and the its characteristics are estimated by the parameters, such as switching frequency, the variation of phase angle(${\varphi}$) of Phase-Shift. It is certain that the proposed circuit will be used and expanded in the high frequency power supplies like induction heating systems.

  • PDF

Clinical Application of Inverter type X-ray Generator (Inverter 방식(方式) X선장치(X線裝置)의 임상응용(臨床應用))

  • Lee, Sun-Sook;Huh, Joon;Lee, Jea-Won;Kim, Jung-Min
    • Journal of radiological science and technology
    • /
    • v.15 no.1
    • /
    • pp.107-113
    • /
    • 1992
  • Inverter type X-ray apparatus has been introduced and used several hospitals. Principle of inverter type X-ray generators are such as to convert the frequency of commercial power supply to high frequency and to control the high voltages for X-ray tube. Inverter generators are now on the way for futher development to elliminate single phase generators and three phase generators. We compared inverter type X-ray apparatus with conventional single phase 2 peak and three phase 12 peak, apparatus in the following aspects X-ray out put to tube voltage, linearity of X-ray out put to mA, HVL according to mA contrast to kV.

  • PDF

Reduction of Components in New Family of Diode Clamp Multilevel Inverter Ordeal to Induction Motor

  • Angamuthu, Rathinam;Thangavelu, Karthikeyan;Kannan, Ramani
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.1
    • /
    • pp.58-69
    • /
    • 2016
  • This paper describes the design and implementation of a new diode clamped multilevel inverter for variable frequency drive. The diode clamp multilevel inverter has been widely used for low power, high voltage applications due to its superior performance. However, it has some limitations such as increased number of switching devices and complex PWM control. In this paper, a new topology is proposed. New topology requires only (N-1) switching devices and (N-3) clamping diodes compared to existing topology. A modified APO-PWM control method is used to generate gate pulses for inverter. The proposed inverter topology is coupled with single phase induction motor and its performance is tested by MATLAB simulation. Finally, a prototype model has built and its performance is tested with single phase variable frequency drive.

Instantaneous Current Control for Parallel Inverter with a Current Share Bus (전류공유버스를 이용한 병렬 인버터 순시 제어기 설계)

  • 이창석;김시경
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.90-94
    • /
    • 1998
  • The parallel inverter is popularly used because of its fault-tolerance capability, high-current outputs at constant voltages and system modularity. The conventional parallel inverter usually employes active and reactive power control or frequency and voltage droop control. However, these approaches have the disadvantages that the response time of parallel inverter control is slow against load and system parameter variation to calculate active, reactive power, frequency and voltage. This paper describes a novel control scheme for power equalization in parallel connected inverter. The proposed scheme has a fast power balance control response, a simplicity of implementation, and inherent peak current limiting capability since it employes a instantaneous current/voltage control with output voltage and current balance and output voltage regulation. A design procedure for the proposed parallel inverter controller is presented. Futhermore, the proposed control scheme is verified through the simulation in various cases such as the system parameter variation, the control parameter variation and the nonlinear load condition.

  • PDF

A Current Sharing Circuit for the Parallel Inverter

  • Lee, Chang-Seok;Kim, Si-Kyung
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.176-181
    • /
    • 1998
  • The parallel inverter is popularly used because of its fault-tolerance capability, high-current outputs at constant voltages and system modularity. The conventional parallel inverter usually employs active and reactive power control of frequency and voltage droop control. However, these approaches have the disadvantages that the response time of parallel inverter control is slow against load and system parameter variation to calculate active, reactive power, frequency and voltage. This paper describes a novel control scheme for power equalization in parallel-connected inverter. The proposed scheme has a fast power balance control response, a simplicity of implementation, and inherent peak current limiting capability since it employees an instantaneous current/voltage control with output voltage and current balance and output voltage regulation. A design procedure for the proposed parallel inverter controller is presented. Furthermore, the proposed control scheme is verified through the experiment in various cases such as the system parameter variation, the control parameter variation and the nonlinear load condition.

  • PDF

Dielectric Barrier Discharge for Ultraviolet Light Generation and Its Efficient Driving Inverter Circuit

  • Oleg, Kudryavtsev;Ahmed, Tarek;Nakaoka, Mutsuo
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.4C no.3
    • /
    • pp.101-105
    • /
    • 2004
  • The efficient power MOSFET inverter applied for a simple and low cost power supply is proposed for driving the dielectric barrier discharge (DBD) lamp load. For decades, the DBD phenomenon has been used for ozone gas production in industry. In this research, the ultraviolet and visible light sources utilizing the DBD lamp is considered as the load for solid-state high frequency power supply. It is found that the simple voltage-source single-ended quasi-resonant ZVS inverter with only one active power switch could effectively drive this load with the output power up to 700 W. The pulse density modulation based control scheme for the single-ended quasi-resonant ZVS inverter using a low voltage and high current power MOSFET switching device is proposed to provide a linear power regulation characteristic in the wide range 0-100% of the full power as compared with the conventional control based Royer type parallel resonant inverter type power supplies.

A new Class-D voltage source series-loaded resonant inverter topology considering stray inductance influences (부유 인덕턴스의 영향을 고려한 새로운 CLASS-D 직렬부하 공진형 인버터)

  • 이병국;유상봉;서범석;현동석
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.2
    • /
    • pp.199-215
    • /
    • 1996
  • A new Class-D series-loaded resonant inverter topology which can minimize the influences of the stray inductances is presented. In the conventional Class-D inverters, the stray inductances not only result in the overvoltage which gives the switches voltage stresses, but also in the high frequency resonant currents during turn-off transients. The new Class-D inverter is superior to the conventional Class-D inverters with respect to minimization of the problems caused by the stray inductances and is more suitable for high power and high frequency inverter systems such as induction heating. The validity of the new Class-D inverter is verified by simulation and experimental results.

  • PDF

A New Islanding Detection Method using Phase-Locked Loop for Inverter-Interfaced Distributed Generators

  • Chung, Il-Yop;Moon, Seung-Il
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.2
    • /
    • pp.165-171
    • /
    • 2007
  • This paper proposes a new islanding detection method for inverter-interfaced distributed generators (DG). To detect islanding conditions, this paper calculates the phase angle variation of the system voltage by using the phase-locked loop (PLL) in the inverter controllers. Because almost all inverter systems are equipped with the PLL, the implementation of this method is fairly simple and economical for inverter-interfaced DGs. The detection time can also be shortened by reducing communication delay between the relays and the DGs. The proposed method is based on the fact that islanding conditions result in the frequency and voltage variation of the islanded area. The variation depends on the amount of power mismatch. To improve the accuracy of the detection algorithm, this paper injects small low-frequency reactive power mismatch to the output power of DG.

An Output Control Research of an Induction Heating System Which Uses a 3-Level Inverter (3-레벨 인버터를 이용한 유도가열 시스템의 출력제어 연구)

  • Kim Sunh-Ho;Kwon Hyuk-Min;Shin Dae-Chul
    • Proceedings of the KIPE Conference
    • /
    • 2004.07b
    • /
    • pp.791-794
    • /
    • 2004
  • This paper made an induction heating inverter. The inverter is the $20\~40[kHz]$ a resonant inverter which uses a high frequency. We use this inverter and use induction heating. A phasor shift ordered a gate signal to adjust an inverter's output. We verified an output waveform according to the situation of a gate signal through the simulation. We made the inverter really and got the result.

  • PDF