• 제목/요약/키워드: Invariant operator

검색결과 114건 처리시간 0.023초

REMARK ON A SEGAL-LANGEVIN TYPE STOCHASTIC DIFFERENTIAL EQUATION ON INVARIANT NUCLEAR SPACE OF A Γ-OPERATOR

  • Chae, Hong Chul
    • Korean Journal of Mathematics
    • /
    • 제8권2호
    • /
    • pp.163-172
    • /
    • 2000
  • Let $\mathcal{S}^{\prime}(\mathbb{R})$ be the dual of the Schwartz spaces $\mathcal{S}(\mathbb{R})$), A be a self-adjoint operator in $L^2(\mathbb{R})$ and ${\Gamma}(A)^*$ be the adjoint operator of ${\Gamma}(A)$ which is the second quantization operator of A. It is proven that under a suitable condition on A there exists a nuclear subspace $\mathcal{S}$ of a fundamental space $\mathcal{S}_A$ of Hida's type on $\mathcal{S}^{\prime}(\mathbb{R})$) such that ${\Gamma}(A)\mathcal{S}{\subset}\mathcal{S}$ and $e^{-t{\Gamma}(A)}\mathcal{S}{\subset}\mathcal{S}$, which enables us to show that a stochastic differential equation: $$dX(t)=dW(t)-{\Gamma}(A)^*X(t)dt$$, arising from the central limit theorem for spatially extended neurons has an unique solution on the dual space $\mathcal{S}^{\prime}$ of $\mathcal{S}$.

  • PDF

Counter-examples and dual operator algebras with properties $(A_{m,n})$

  • Jung, Il-Bong;Lee, Hung-Hwan
    • 대한수학회지
    • /
    • 제31권4호
    • /
    • pp.659-667
    • /
    • 1994
  • Let $H$ be a separable, infinite dimensional, complex Hilbert space and let $L(H)$ be the algebra of all bounded linear operators on $H$. A dual algebra is a subalgebra of $L(H)$ that contains the identity operator $I_H$ and is closed in the ultraweak operator topology on $L(H)$. Note that the ultraweak operator topology coincides with the weak topology on $L(H) (cf. [6]). Several functional analysists have studied the problem of solving systems of simultaneous equations in the predual of a dual algebra (cf. [3]). This theory is applied to the study of invariant subspaces and dilation theory, which are deeply related to the classes $A_{m,n}$ (that will be defined below) (cf. [3]). An abstract geometric criterion for dual algebras with property $(A_{\aleph_0}, {\aleph_0})$ was first given in [1].

  • PDF

A NEW 3-PARAMETER CURVATURE CONDITION PRESERVED BY RICCI FLOW

  • Gao, Xiang
    • 대한수학회지
    • /
    • 제50권4호
    • /
    • pp.829-845
    • /
    • 2013
  • In this paper, we firstly establish a family of curvature invariant conditions lying between the well-known 2-nonnegative curvature operator and nonnegative curvature operator along the Ricci flow. These conditions are defined by a set of inequalities involving the first four eigenvalues of the curvature operator, which are named as 3-parameter ${\lambda}$-nonnegative curvature conditions. Then a related rigidity property of manifolds with 3-parameter ${\lambda}$-nonnegative curvature operators is also derived. Based on these, we also obtain a strong maximum principle for the 3-parameter ${\lambda}$-nonnegativity along Ricci flow.

SEMI-INVARIANT SUBMANIFOLDS OF CODIMENSION 3 IN A COMPLEX HYPERBOLIC SPACE

  • KI, U-HANG;LEE, SEONG-BAEK;LEE, AN-AYE
    • 호남수학학술지
    • /
    • 제23권1호
    • /
    • pp.91-111
    • /
    • 2001
  • In this paper we prove the following : Let M be a semi-invariant submanifold with almost contact metric structure (${\phi}$, ${\xi}$, g) of codimension 3 in a complex hyperbolic space $H_{n+1}{\mathbb{C}}$. Suppose that the third fundamental form n satisfies $dn=2{\theta}{\omega}$ for a certain scalar ${\theta}({\leq}{\frac{c}{2}})$, where ${\omega}(X,\;Y)=g(X,\;{\phi}Y)$ for any vectors X and Y on M. Then M has constant eigenvalues correponding the shape operator A in the direction of the distinguished normal and the structure vector ${\xi}$ is an eigenvector of A if and only if M is locally congruent to one of the type $A_0$, $A_1$, $A_2$ or B in $H_n{\mathbb{C}}$.

  • PDF

MORE PROPERTIES OF WEIGHTED BEREZIN TRANSFORM IN THE UNIT BALL OF ℂn

  • Lee, Jaesung
    • Korean Journal of Mathematics
    • /
    • 제30권3호
    • /
    • pp.459-465
    • /
    • 2022
  • We exhibit various properties of the weighted Berezin operator Tα and its iteration Tkα on Lp(𝜏), where α > -1 and 𝜏 is the invariant measure on the complex unit ball Bn. Iterations of Tα on L1R(𝜏) the space of radial integrable functions have performed important roles in proving 𝓜-harmonicity of bounded functions with invariant mean value property. We show differences between the case of 1 < p < ∞ and p = 1, ∞ under the infinite iteration of Tα or the infinite summation of iterations, most of which are extensions or related assertions to the propositions of the previous results.

SEMI-INVARIANT MINIMAL SUBMANIFOLDS OF CONDIMENSION 3 IN A COMPLEX SPACE FORM

  • Lee, Seong-Cheol;Han, Seung-Gook;Ki, U-Hang
    • 대한수학회논문집
    • /
    • 제15권4호
    • /
    • pp.649-668
    • /
    • 2000
  • In this paper we prove the following : Let M be a real (2n-1)-dimensional compact minimal semi-invariant submanifold in a complex projective space P(sub)n+1C. If the scalar curvature $\geq$2(n-1)(2n+1), then m is a homogeneous type $A_1$ or $A_2$. Next suppose that the third fundamental form n satisfies dn = 2$\theta\omega$ for a certain scalar $\theta$$\neq$c/2 and $\theta$$\neq$c/4 (4n-1)/(2n-1), where $\omega$(X,Y) = g(X,øY) for any vectors X and Y on a semi-invariant submanifold of codimension 3 in a complex space form M(sub)n+1 (c). Then we prove that M has constant principal curvatures corresponding the shape operator in the direction of the distingusihed normal and the structure vector ξ is an eigenvector of A if and only if M is locally congruent to a homogeneous minimal real hypersurface of M(sub)n (c).

  • PDF

PDE-PRESERVING PROPERTIES

  • PETERSSON HENRIK
    • 대한수학회지
    • /
    • 제42권3호
    • /
    • pp.573-597
    • /
    • 2005
  • A continuous linear operator T, on the space of entire functions in d variables, is PDE-preserving for a given set $\mathbb{P}\;\subseteq\;\mathbb{C}|\xi_{1},\ldots,\xi_{d}|$ of polynomials if it maps every kernel-set ker P(D), $P\;{\in}\;\mathbb{P}$, invariantly. It is clear that the set $\mathbb{O}({\mathbb{P}})$ of PDE-preserving operators for $\mathbb{P}$ forms an algebra under composition. We study and link properties and structures on the operator side $\mathbb{O}({\mathbb{P}})$ versus the corresponding family $\mathbb{P}$ of polynomials. For our purposes, we introduce notions such as the PDE-preserving hull and basic sets for a given set $\mathbb{P}$ which, roughly, is the largest, respectively a minimal, collection of polynomials that generate all the PDE-preserving operators for $\mathbb{P}$. We also describe PDE-preserving operators via a kernel theorem. We apply Hilbert's Nullstellensatz.

Hyperinvariant Subspaces for Some 2 × 2 Operator Matrices, II

  • Jung, Il Bong;Ko, Eungil;Pearcy, Carl
    • Kyungpook Mathematical Journal
    • /
    • 제59권2호
    • /
    • pp.225-231
    • /
    • 2019
  • In a previous paper, the authors of this paper studied $2{\times}2$ matrices in upper triangular form, whose entries are operators on Hilbert spaces, and in which the the (1, 1) entry has a nontrivial hyperinvariant subspace. We were able to show, in certain cases, that the $2{\times}2$ matrix itself has a nontrivial hyperinvariant subspace. This generalized two earlier nice theorems of H. J. Kim from 2011 and 2012, and made some progress toward a solution of a problem that has been open for 45 years. In this paper we continue our investigation of such $2{\times}2$ operator matrices, and we improve our earlier results, perhaps bringing us closer to the resolution of the long-standing open problem, as mentioned above.

LOCAL SPECTRAL THEORY II

  • YOO, JONG-KWANG
    • Journal of applied mathematics & informatics
    • /
    • 제39권3_4호
    • /
    • pp.487-496
    • /
    • 2021
  • In this paper we show that if A ∈ L(X) and B ∈ L(Y), X and Y complex Banach spaces, then A ⊕ B ∈ L(X ⊕ Y) is subscalar if and only if both A and B are subscalar. We also prove that if A, Q ∈ L(X) satisfies AQ = QA and Qp = 0 for some nonnegative integer p, then A has property (C) (resp. property (𝛽)) if and only if so does A + Q (resp. property (𝛽)). Finally, we show that A ∈ L(X, Y) and B, C ∈ L(Y, X) satisfying operator equation ABA = ACA and BA ∈ L(X) is subscalar with property (𝛿) then both Lat(BA) and Lat(AC) are non-trivial.