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BANACH ALGEBRA OF FUNCTIONALS OVER PATHS
IN ABSTRACT WIENER SPACE

YEON-HEE PARK

ABSTRACT. In this paper, we will establish the existence theorem
of the operator valued function space integral over paths in abstract
Wiener space under the general conditions rather than the known con-
ditions.

1. Introduction

In their paper ([3]), Johnson and Lapidus introduced a family of {.4;,t >
0} of commutative Banach algebras of functionals on Wiener space and
showed that for every F' € A;, the functional integral K:(F) exists and
is given by a time ordered perturbation expansion which serves to dis-
entangle, in the sense of Feynman’s operational calculus. In [4], Kuelbs
and LaPage suggested the existence of mean zero, stationary increment,
Gaussian measure over paths in abstract Wiener space Cy(B). In {5}, Ryu
found the formula similar to Wiener integration formula and established
the existence theorem of the operator-valued function space integral of
functionals on Cy(B). In [7], Yoo and Ryu introduced the (s-w)-integral
and proved the existence of the operator-valued function space integral
represented by (s-w)-integral.

In this paper, we show that for certain functions F' given by (1) in
section 3, the operator valued function space integral K*(F) exists and can
be disentangled by a time ordered perturbation expansion or generalized
Dyson series (see Theorem 16 below). Also we introduce a family {B;,t >
0} of Banach algebras of paths in abstract Wiener space and show that for
every F' € B,, the functional integral K%(F) exists and || KL(F)|| < || F|.-
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We restrict attention to real A > 0 whereas that restriction is not made

in [3].

2. Definitions and Preliminaries

Let (B, 3(B), m) be an abstract wiener space and let Cy(B) denote the
set of all B-valued continuous functions on [0,t] into B which vanish at
origin. From [4] it follows that Cy(B) is a real separable Banach space
with the norm

Izllcom) = sup lz(s)|l5

and the minimal o- algebra making the mapping z — z(s) measurable
consists of the Borel subsets of Cy(B). Moreover the Brownian motion in
B induces a probability measure mp on (Cy(B), 5(Co(B)) which is mean
zero Gaussian.

We begin with introducing a concrete form of mp in [5]. Let § =

(81, ,8,) begiven with 0 =s5 < 83 < --- < s, <t andlet Ty: B® —
B™ be defined by
Té'(yl;"' ,yn)

n
= <\/31 — S0Y1, V/S1 — Soy1 + V2 — S1yz, - ,Z VSk — sk—lyk) .
k=1

Then we define a Borel measure v; on S(B") by vs(E) = (xim)(T7 '(E))
for every E € B(B"). Let fs: Co(B) — B"™ be the function with

fs(y) = (y(s1), -, y(sn))-

For Borel subsets Ey,- -+ , E, of B, f71(x}E;) is called the I-set and then
the collection 7 of all I-sets is an algebra. We define a set function mpg on
T by mp(f7(X1E;)) = vs(x}E;). Then mp is well defined and countably
additive on Z. Using the Caratheodory process, we have a Borel measure
mp on B(Co(B)).

Now we introduce integration formula which plays a key role in this
paper. We easily obtain by the change of variable theorem.
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LEMMA 1. Let §= (s1,---,8,) begiven with0 = sy <51 < --- <5, <
t and let f : B® — C be a Borel measurable function. Then

. flz(s1), -+, z(sn))dmp(z) = IR AU TR E CHLOICTIREER Y

where by = we mean that if either side exists then both sides exist and
they are equal.

Next we give some definitions and facts from [7].

DEFINITION 2. Let L, (B)(1 < p < 00) be the class of all C-valued
Borel measurable function ¥ on B such that for each A > 0, ¥(A(")) is m-
integrable and

[¥llee = 800 1O o= sup | [ W) Pam(@)]” < o0

For f and ¢ in L, (B), we say that f is equivalent to g, denoted by
f ~ g, if {\z € B|f(z) # g(z)} is an m-null set for all A > 0. Clearly
~ is an equivalent relation on L, (B). Hence we obtain a quotient space
L, (B)/ ~ which we denote by L, (B).

THEOREM 3. L,(B) is a Banach space with norm || - ||, but it is
not separable.

DEFINITION 4. For A > 0, we define an operator C) on L, .(B) given
by

(Cx0)(z / YA Y22y 4 z)dm(z))
for ¢ € L, oo(B).

LEMMA 5. For A > 0, C, is a bounded linear operator from L, .(B)
into itself. Moreover ||C,]| < 1.

REMARK 6. 1. C, is not strongly continuous.

2. Let A, > 0, let ¥ € L,o(B) and z € B. Then [(Cy o C,)¢)(z) =
C o (¥)().

3. Let C,\ = (7, for A > 0. Then C7 has the semigroup property with
respect to .
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DEFINITION 7. For a bounded Borel measurable functional 8, on B,
we define the multiplication operator My, by (My,¥)(z) = 6:1(z)¥(z) for
¥ € Lyoo(B). Let 8 :{0,¢] x B — C be a bounded Borel measurable
function. Let 6(s) denote the operator Mps.) of multiplication by 6(s,-),
acting in L, «(B).

REMARK 8. Let C(B) be the space of all B-valued continuous func-
tions on [0,t]. z in C(B) has a unique decomposition z = = + y where
z € Cy(B) and y € B.

DEFINITION 9. Fix ¢t > 0. Let F : C(B) — C be a function, and
A> 0,9 € L,o(B) and y € B. We consider the expression

(KL(F)$)(y) = /C o PO 400 25(0) + ) (2),

If Ki(F) exists and K{(F') is a bounded linear operator from L, (B) into
itself for all A > 0, then we say that the operator valued function space
integral K(F') exists for all A > 0.

DEFINITION 10. Let (©, ) be a measure space and let f : Q@ —
L(Lpoo(B), Lpoco(B)), the space of all bound linear operator from L, (B)
(1 < p < 00) to itself, be a function. We say that f is (s-w)-integrable
if there exists U € L(L,eo(B), Lpoo(B)) such that for ¢ € Ly(B),
¢ € Ly o(B) with -;; + % = 1, v a Borel measure on (0, +00), A > 0,

/(O,m) / 0Bl (a)ea)m ()
= [ [ ifemiete)im @i (du).
Q J(0,+00) J

In this case, we write U = (s — w) — [, f(w)dp(w).
THEOREM 11. The (s-w)-integral is well defined.

THEOREM 12. If f is (s-w)-integrable on §2, f is bounded and A is a
measurable subset of ), then f is (s-w)-integrable on A. Moreover for v
in Ly« (B),

(s —w) - / fw)dp(w)| () = / FW)(@)duw) s - aez.
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THEOREM 13. Let f be (s-w)-integrable on €2 such that || f|| is bounded.
Then

(=)= [ F)du@)] < 1711l (@).

THEOREM 14. If f is (s-w)-integrable, f is bounded and (A4;) is a se-
quence of pairwise disjoint Borel measurable subsets of €1, then

(s ~w) - /U&Ai fw)(z)dp(w) = ;(8 —w) = /Ai f(w)(z)dp(w)

in the uniform topology.

THEOREM 15. Let (f,) be a sequence of (s-w)-integrable functions on
2 with such that || f,|| is bounded and (f,) converges to f uniformly in the
uniform operator topology. Then f is (s-w)-integrable on Q2. Moreover,

i (s~ w) ~ | @) = (= w) = [ F)du(o)

n—o0

3. Operator valued function space integral and Banach alge-
bra

In this section we adopt the following notations and assumptions. Let
6, : [0,t] x B — C be a bounded Borel measurable function for v =
1,---,m and let M(0,t) be the space of complex Borel measures n on
the open interval (0,t). Then every measure n € M(0,t) has a unique
decomposition, n = p + v, into a continuous part u and a discrete part v
[3].

By contrast to [5], many measures and potentials may be involved;
moreover, the discrete part of each measure is unrestricted. First we
consider the functionals of type

1) Fo) =] /( (s (s n(s),

where 1, € M(0,t), 6, are given as above foru = 1,--- ;m and z € C(B).
Let n, = py + v For eachu =1,--- ,m, we write

o0
(2) W = Z wPIU(STP:u
p=1
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where {7,,,}52; is a sequence from (0,¢) and {wp,};2; is a sequence from

C such that

Il = lwpal < o0,

Given k between 0 and m, [k : m] will denote the collection of all subsets
of size k of the set of integer {1,---,m}. If {a1,---, 04} € [k : m], we
shall always write {@gs1,- - ,an} = {1, - ,m}/{a1, -, o}

Now we state and prove one theorem of our main results.

THEOREM 16. Let F be defined by (1). Then K(F) exists for all
A > 0 such that

(KA(F))

@ =3 Y YN Y (1] vhen)

k=0 {0, ,op}elk:m] Prr1=1  pw=1 p€Sy ji++im-k1=k u=k+1

(s —w) — /A (Li-+ Lin(s1,- - - :Sk)]d(xﬁ=1/‘a,,(u))(sp(U))

Ridy e sdm—k+1 (p)

where for each fixed k € {0,--- ,m}, p ranges through the group S; of
permutations of {1,--- ,m} and

k
Akigrimin (@) = {81, ,86) € (0,8)]0 < sp1) < -+ < 53
< Tpptryioiny < Spii+1) < ° < Sp(itga) < Toor42)1 %0 42)
(4) < sp(j1)+j2+1) <-- < Sp(j1+j2+“‘+jm-k) < Tpa(m);au(m)

< Splttimaitl) < 0 < Spk) < -

In addition, for (s1,-- ,sk) € Mgy o (p) and r =k, -+ ;m,
LT = 0%(,-) (Tpa(r);ag(r)) ° Cdr,l © ga,,(jﬁmﬁr-kH)(Sp(jx+~-~+jr-k,+1)) © Cdr,z
(5) oean(jﬁ---ﬁ,_mz)(Sp(jl+~--+jr_k+2)) ©---0 Cdr,jr_k "
of)

gy +ip_pp1) (Sp(jl ot feokdr) ) © Cdr+1,o
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where

_ _ _ -1
dr,l - )‘[Sp(j1+~"+1r—k+1) Tpa(r)] )

(6) dry10 = )‘[Tpa(r+1) - (sp(jl+"'+jr—k+l)]_17

dm' = )\[sp(jl+"'+jr—k+i) - sﬂ(j1+"'+jr—k+i—1)]_l (Z =2, ’jr—-k+1)'
Here, o is a permutation of {k + 1,--- ,m} such that
<. <

Tpa(k+1) Wo(k=1) Tpa(m) Qg (m) *

C’onvgntwns: Tooyicoy — O;TPa(m+l)§ao(m‘—l) =t and oaa(l\:) (Tpa(.kﬁao(k)) =1, the
identity operator. We take j, = 0; then when r = k, it is reasonable to

interpret j; +---+ j,—x + 1 as 1 and j,_y = 0. Further, for all A > 0
(7) 1K) < H(Suplé’ [lImal])-

PROOF. Let A > 0 be given and ¢ be in L,(B). Then for y in B
except for some Borel scale invariant null subset,

IO + y)p (A 2e(t) +y)| < [[(sup 0l ) (A"22(2) + y)|

u=1

for z € Cy(B). Using by Lemma 1 and the generalized Minkowski’s in-
equality and the Jensen’s inequality, we have

1B (F )bl poo

sup| [ 1(K4FY) )P am(y)]”

Il

IN

[Ttsup aaindyssp ([ woa + mlamo (@) amw)] %

u=1

= TJtsupl6lin) sup /( ([ wo2viz + plam(a)) ()"

u=1

IA

u=1

m

= Tewlinlsue [ o(v/axs@apan()’

u=1

dl
[T lalinisup] [ [ w0V « mPim)in)
[

m

= H(sup (80177 ”)”¢”l’00

u=1

Therefore we obtain (7).
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Also for y in B except for some Borel scale invariant null subset, for ¢
in Lyo(B) and for any Borel measure v on (0, 00)

A " / (KLY (w)eo()dma () i)

(AT (t)+y)w(y)dm3(w)dmx(y)d1/(/\)

) / [ [/ 0u(5, A" 2a(s) + y)dpu( s)+zw,,u (s A 1/z(r,,")+y>]
s JCo(B) = LI (0,1)

- (A2 (t) + y)w(y)dma(z)dma(y)dv(A)

) /om/m/couz){z 2 > - Z[H/ Oau(8u, X 1/zﬂv(su)+y)duau(su)]

k=0 {1, o }elkim] Pr1=1 Pm=1 *u=1

=

—
N

i

m
_1/2
: L H wpa(u) o (u) eaa(u) (Tpﬂ(u) Qo (u)? A x(Tpﬂ’(") ;0‘7(“)) + y)]
n=h+1

A Ma(t) + y)}m)dmg(z)dmx(y)du‘(x)

SR INP O LD 3 4y

) L 0 {ay, ak}ELm)PkH-l

Hoau (8u, A” 2 z(s,) +y) xﬁ:l dpt, (s4)

u=1

m

-1/2
) H Whn )9 Doty (Tpa(u);aa(u)’A / m(Tp,(u);a,,(..)) +y)
u=k+1

(NP2 () + ) (y)dmp(z)dma(y)dv(N)

2y ¥ LoTy %

k=0 {a1, ap}elkim] Ppr1=1  Pm=1 PESk i+ TIm-kr1=k

m o0
Wit o (Sptuys X V22 (Sp0) + ¥)
( H Por(u) 1% (u))/(; [l,\‘/A‘ " /;‘0 H ) \Fp(u) p(u)

u=k+1 kit Imek1 (B) y=1
m

) -1/2
H Bctyia) (TPa(u);aa(uw A x(Tl’q(u);au(u)) +9)
u=k+1

. "[)( -z (t) + y)‘P(y)de(m) Xu_ d/"'np(u)(sp(u))dmA(y)dV()‘)'

Step(2) results from (2) and carrying out the integral with respect to
Z;f’: | Wpulr,,. Step(3) follows from multinomial theorem. For p € S,
define the simplex

Ar(p) = {(s1,- -, sx) € (0,1)"10 < sp1) < -+ < 3,0 < t}.
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Since 4 is continuous measure, it can be seen by a sectioning argument
that

(0, t)k = U Ax(p) = U U Ak};ls‘“ i1 (P)

PES;, PESY J1+- A im—p-1=k

except for a set of y X - -- X y measure zero. And by the Fubini theorem,
we have step(4) and step(5). Let

u=1

k
A = / Oa,r, (80w, AV 22(8,0) + 1)
Co(B) H (1) plu) o( ))

: H gaa(u) (Tpa(u);aa(u)7 A-1/237(Tpa(u);C‘o(u)) + y)’(/J(A_l/2m(t) + y)de (x)‘

u=k+1

Let

— \—1/2 = ) .
Qg0 = A \/ Too(-gy — Sp(ir++5q)Tq,05

— \~1/2 ) ) —
Qg-1,1 = A \/Sp(y1+~~~+1q-1+1) Tpo—g-1yLg—1,1

where ¢ = 1,--- ,m — k + 1. By Lemma 1, (5),(6), and Definition 4, we
have

4= /B -1 Oy (S02)> @01 + Y)0a (o2), a0, + )‘—1/2\/ Sp(2) — Sp)To2 + Y)

J
O (-S‘p(jl), ao1 + A7/ Z V/5p() — Sp(i-1)To;i + ?!>
=2
J1
“Bois oy <5p(j1+1), ag1 + a0+ a1y + A7 Z V Sp(&) — Sp(i-1)T0;; T y)
1=2
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2 Jg
.. L —-1/2 ) o :
oap(jl..jz) (SP(JI+J2)’ A § : § , V/ Splirtig i) — Sp(jr+-+jg-1+i~1)Tg-1,i

g=1 {=2

2
+ E g-11+ ap+ y) tt 6ap(jl+-»+jm_k+l) (sp(jl+"'+jm—k+1)’

g=1
m~k Jq
~1/2
A § : § :\/sﬂ(j1+-"+jq—1+i) T Splh+tigaa+i~1)La—1,5
g=1 =2
m—k
+ (aq—l,l + aq,o) + Om-k,1 + y) T 0ap(j}+--~+jm_k+l) (sp(jl+"'+jm—k+1)’
g=1
m—k-+1 jq
-1/2
S DD DRV R w——— 8 p(ji-+-tig-1-+i-1)Tgm1,
g=1 =2
m—k m
+ z :(aq—l,l + aq:o) + am"k)l + y) : H 9(10(“) (Tpa(u)§aa(u)’
g=1 u=k+1
u—k jq
-1/2 2 E ) ) )
A \/SP(J1+---+J«,—1+Z) T Splii g +i-)Tg-1,4
g=1 =2
u—k
+ E :(aq—l,l + a40) + y)
9=1

m—k+1 jq

. —1/2 § z ) e

¥ ()‘ \/SP(11+"'+JI;—1+Z) Splgr+-+jg1+i-1)Tg-1,
g=1 i=2

m-—-k+1
+ Z (@g-11+ agp) + y) d(x 75 < m) (z,-1,)
q=1

= ([9%(4:) (TPU(A~)§aa(k)) °© Cdk,1 o 00/)(:)(3/’(1)) ° Cdk.z 0---0 9ap(j,)(sp(51)) ° Cdk—l,o]
°© [eaa(k—l) (szr(k—l)§aa(k-l)) © Odkﬂ,] © eap(j1+x)(5p(jl+1)) o Cdk—l,z O~
eap(jl-jg)(sp(jl+j2)) ° Cd&-*z,o] -0 ‘:gaa(rn)(’rpa(m)}o‘a(m)) o Cy,,
ga,,(jr,.._jm_kﬂ)(Sp(j1+~-~+j,,,4,.+1)) 0Cy,,0::0 Oy (Spis)) © Cdm—x,o] 1/)) (%)
= (LiLiyr - L) (y)
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where Z,0 = Tp-1;4+1,p = 1,---,m — k + 1. Hence from the similar
method as in proof of Theorem 2.7 in (7], we conclude that (3) holds for
all A > 0. a

Next we prove the existence of the operator valued function space integral
K!(F) for the series of functional of the form (1) and write each of the
factors in (1) as an absolutely convergent infinite series.

COROLLARY 17. Let (F),) be a sequence of functionals, each given by

(8) R =] /(0 CRCECIENE

where 1,, € M(0,t) and 6,, is as above. Assume that > - [Ir,
sup(|0s.ulllnull) < 0o and F(z) := 5.7 Fy(z). Then for all A > 0, Ki(F)
exists and is given by Ki{(F) = > > Ki(F,) where K!(F,) is defined
by (3), with the functional F' from Theorem 16 replaced by F,. The se-
ries converges in operator norm. Furthermore, for all A > 0 we have the
estimate

[

n=0 u=1
PROOF. Since
S IEAT Pz +y) <Y TP baullnmul) < oo,
n=0 n=0 u=1

the individual terms are defined and the series absolutely converges for
mp X m a.e. (z,y) € Co(B) x B. Also for y € B except for some Borel
scale invariant null subsets,

|Fo( A2z + y)p (X2 (t) + )|

M3

3

e~

m

< (sup G, 17N (A 22(2) + )]

n=0 u=1
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and [¢(A"/2z(t) +y)| is integrable in z. Hence by dominated convergence
theorem, for ¢ € L, (B) and for any Borel measure v on (0, +00),

/(0 /<Ki<F>¢>(y)<p<y)dmx<y>dum

/(0 | N " ZF(A-‘/2x+y)w< (1) +y) ) py)dms(a)dm (y)dv(N)

ZA )/n /C(B)(Fn(A‘172x+y)w(/\"/2w(t)+y))w(y)dma(z)dmx(y)dV(A)

AJ )/n Z(K)‘ (F)d) (w)e(y)dm,(y)dv( ).

A n=0

Now the inequality ||K%(F,)|| < [Tiw;(sup 0nulll7nl]) from (7) in Theo-

rem 16 assures that the series > (K% (F},)) converges in operator norm,
uniformly for A > 0. Thus by Theorem 15 K%(F') exists and K{(F) =
> o(KL(Fy)). Further

0o my

IEG(F) < ZHK/\ F) <Y T1up 6nullmmal)-

n=0 u=1

O

We show that the general class of functionals treated in Corollary 17
forms a commutative Banach algebra. The proof is not much different
from [3] except for scaling property.

DEFINITION 18. Let F' and G be C-valued Borel measurable functions
on Cy(B). We say that F is equivalent to G, write, F' ~ G if for all A > 0
F(A 12z 4 y) = G\ V22 +y) for mp x m-a.e. (z,y) € Co(B) x B.

DEFINITION 19. Let (F},) be a sequence of functionals each of which is
given by an expression of the following form

9 F.(z)= T O (8, 2(8))dn, (s
(9) (2) H/()( (5))duls)
satisfying

(10) > T (sup 1nullinml)) < co.

n=0 u=1
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Let F' be defined by

(11) FA Yz +y) = iFn(A‘l/Qx—i—y).

n=0

It is shown in Corollary 17 that for every A > 0, the series in (11) converges
absolutely for mp x m-a.e.(z,y) € Co(B) x B. We define B, to be the
collection of equivalence classes of functional F' obtained in this manner.
For F in B;, we define || F||; be the infimum of the left hand side of (10)
over all representations of F' of the form (11).

THEOREM 20. For each t > 0 the space (B, || - ||:) is a commutative
Banach algebra with identity. Moreover given F' € B,, Ki(F) exists for
all A > 0 and satisfies the norm estimate ||K!(F)|| < ||Flls.

PROOF. Clearly, 0 < ||F||: < oo for each F' € B;. Let F and G in B;.
Then given £ > 0, take a representation for F' defined by (9) and (11) such
that the left hand side of (10) is less than ||F||; + ¢/2. Choose a similar
representation for G. Since the series are absolutely convergent, (F +
GYA VP ty) = 50 ((Fut+ Gn) (A 22 +y) and |[F + G|l < ||F|le+ |Gz
Also ||aF||; = |a|||F||; for « € R. Let ||F||; = 0 and F € B;. Then for any
positive integer p, there exists a representation for F' given by (9) and (11)
and S°%°  TI™, (sup |0l null) < 1/p. Hence for any A > 0, |F,(A~%z +
y)| < 1/p for all n. Thus for A > 0, F(A\"Y2z +y) = 0 for ae. (z,y) €
Cyo(B) x B. Hence F is equivalent to 0. Therefore (B, || - ||;) is a normed
space. Also for every A >0, ., F(A V22 +y)G;(A"12z +y) converges
absolutely a.e.(,y) and has the sum F(A~1/2z+y)G(A\"12z +y). Further
‘each term is of the type (9). Consequently FG € B, and ||FG||; < (|| F||:+
e/2)(|G|l: + €/2). Since € was arbitray, || FG||; < ||F|:||Gl|:- Therefore B,
is an algebra. To show completeness, it suffices to show that every absolute
summable series is summerable in the norm of the space. Given a sequence
(F,) in B, with 37 | || F,,|l: < 00, we can choose representation of the form
(9) and (11), as follows

Fy=Fy+Fot - Fo=Fy+Fpt- o Fy=Fyt Fyt oo

such that for each n, the left hand side of (10) is less than || F, |, + 1/2™
The terms of > F;; are of the form (9) and corresponding series of the
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form (10) converges to a number less than ) o> | [|F,||: + 1. Let

o0
FAr4y):= ) F;(A Pz +y).
ij=1
Then F € B; and we can choose N’ large so that Y /., [[Frll;+1/2" <.

So v
IF-YFl=1 Y Rl< Y IR+ 12 <c.
n=1 n=N'4+1 n=N'+1
Thus (B, || - 1) is a Banach algebra. By Corollary 17, K (F) exists for all
A >0 and ||K{(F)|| < [|Ffle. O

COROLLARY 21. For each A > 0, the mapping K} : B, — L(Lyw(B),
L,oo(B)) which associates K{(F) to F € B, is a bounded linear operator
of norm at most 1.
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