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ABSTRACT. In a previous paper, the authors of this paper studied 2 x 2 matrices in upper
triangular form, whose entries are operators on Hilbert spaces, and in which the the (1,1)
entry has a nontrivial hyperinvariant subspace. We were able to show, in certain cases,
that the 2 X 2 matrix itself has a nontrivial hyperinvariant subspace. This generalized two
earlier nice theorems of H. J. Kim from 2011 and 2012, and made some progress toward
a solution of a problem that has been open for 45 years. In this paper we continue our
investigation of such 2 x 2 operator matrices, and we improve our earlier results, perhaps
bringing us closer to the resolution of the long-standing open problem, as mentioned above.

1. Introduction

The notation and terminology herein are completely standard and exactly the
same as in [5]; nevertheless, we briefly review the main definitions. Throughout
this note H will always denote a separable, infinite dimensional, complex, Hilbert
space, and B(H) the algebra of all bounded linear operators on H. The space of
scalar multiples of the identity operator 14¢ is denoted, as usual, by Clgc. For T in
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B(H) we write
{T} ={S € B(H): ST =TS},
for the commutant of T and o, (T') for the point spectrum of T. A subspace (i.e.,
a closed linear manifold) M C 3 is said to be a nontrivial invariant subspace (no-
tation: n.i.s.) for an operator T in B(H) if (0) # M # H and TM C M. If M is
a ni.s. for T and furthermore has the property that 7'M C M for all 77 € {T},
then M is said to be a nontrivial hyperinvariant subspace (notation: n.h.s.) for
T. As is well-known, the problem of whether every T in B(H) has a n.i.s. (called
the invariant subspace problem for operators on Hilbert space) remains unsolved,
although many partial results are known. (For more information about this topic,
the reader may wish to consult the excellent book [1]). It is also the case that there
are two related problems whose answers are not known. The first is the question
of whether every operator in B(H) \ Clg; has a n.h.s., called the hyperinvariant
subspace problem for operators on Hilbert space. The second (called sometimes the
hypertransitive operator problem for operators on Hilbert space) is the question of
whether there exists an operator 7" in B(H) such that for every nonzero vector
in K, the orbit of z under T, namely {7z}, is dense in H.
For the readers’ convenience we now restate [5, Theorem 2.1]:

Theorem 1.1. Let A, B, and C be arbitrary operators in B(H), and define Tc €
B(H @ H) matricially as

(1.1) TC::(‘S g)

If there exists a pair (X, M), where X € B(H) with AX = XB, and M is a n.h.s.
for A such that XH ¢ M, then for every D in B(H), Tp has a n.h.s.

Observe now that every operator S in B(H)\Clgc that is known to have a n.i.s.
but not known to have a n.h.s. is unitarily equivalent to some operator T¢ in
B(H @ H) of the form (1.1) (but without the hypothesis that A has a n.h.s.). This
follows from the fact that if either the known n.i.s. for S or its orthocomplement
is finite dimensional, then S or S* has nonempty point spectrum, from which the
existence of a n.h.s. for S follows trivially. Thus when studying operators like S, no
generality is lost by instead considering operators of the form T in (1.1). Moreover
there are such operators for which the operator A in (1.1) is known to have a n.h.s.,
and it is this class of operators to be studied herein.

Example 1.2. Let {e, },ecz be an orthonormal basis for H and let w = {wy, }nez be
a bounded sequence of positive numbers that is also bounded away from 0. Define
W € B(H) by the equations

Wypen = wnpen_1, n € 7.

Obviously W, is an invertible bilateral weighted shift, and with M defined as

M= \/ {e—n}s

neN
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one sees easily that M is a n.i.s. for W, and Wy, |y is unitarily equivalent to the
forward weighted unilateral shift V,,_ defined by

Vw_€e—n=w_pne_(ny1), neEN

Moreover
Mt =\ {en},
ne€Ng
and if we define V;; by the equations

v 60:0, V.

* —
wy 1u+en = Wpep—1, N E N7

then obviously V,; is a backward weighted unilateral shift and W,, is unitarily
equivalent to the operator T¢ in (1.1), where A is unitarily equivalent to V,,_, B is

unitarily equivalent to Vi7 , and C' is unitarily equivalent to the operator of rank
one R : H — H defined by

Reg = wpe_1, Re, =0, neN.

Moreover, it is well-known that all forward weighted unilateral shifts have nontrivial
hyperinvariant subspaces (cf., e.g., [10]). Thus if all operators of the form T¢ in
(1.1), where A has a n.h.s., were known to have a n.h.s., then the longtime, still
open problem of whether invertible weighted bilateral shifts have a n.h.s. would be
solved.

On the basis of Example 1.2 the question of whether all operators of the form
Te in (1.1) have a n.h.s. when A does is of considerable interest, and in this note
we continue to make progress on this problem, improving some results in [5].

2. The Class (RIH)

We next define a (perhaps new) class of operators to which our main theorem
below (Theorem 2.4) applies.

Definition 2.1. An operator T in B(JH) will be said to belong to the class (RIH)
(or (RIH)(H) if necessary to avoid confusion) if T satisfies the following three con-
ditions:

(a) neither 7" nor T* has nonempty point spectrum,

(b) T has a n.h.s., and

(c) for every n.h.s. N of T, each of T'|y and T™*|x. has a n.h.s.
Remark 2.2. The name (RIH) comes from the phrase “restrictions inherit non-
trivial hyperinvariant subspaces”.

The interest in the class (RIH) arises from the fact that operators T in (RIH)
have particularly nice hyperinvariant subspace lattices (notation: Hlat(T)).

Proposition 2.3. Let T € B(H) be an arbitrary operator in the class (RIH). Then
Hlat(T') has the following properties.
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(I) T € (RIH) if and only if T* € (RIH).
IT) For every M # (0) in Hlat(T) and every N+ (0) in Hlat(T™*),

dimM = dimN = Rg.

IIT) N{M C H : M € Hlat(T) and M #(0)} = (0).
IV) VIM C 9 : M € Hlat(T) and M # 3} = K.

Proof. All of I)-IV) follow easily from the definition of (RIH), the fact that M is
a n.h.s. for T if and only if M~ is a n.h.s. for T*, and the fact that for any T in
B(H), the intersection of any family of hyperinvariant subspaces for T is again a
hyperinvariant subspace for T O

The principal result of this note is the following, which is of interest because of
the important classes of operators in B(JH) that are subsets of (RIH), as we shall
see below.

Theorem 2.4. Let A € (RIH)(H) and let B be an arbitrary operator in B(H). If
there exists a nonzero X € B(H) such that AX = X B, then for every C in B(H),
the operator Tc as in (1.1) has a n.h.s.

Proof. To apply Theorem 1.1, we observe that if X # 0 and AX = X B, then
it suffices to show that A has a n.h.s. M such that XH ¢ M. If (XH)™ = H, then
every n.h.s. £ of A has this property, so we may suppose that (XH)™ = £ # H.
By III) of Proposition 2.3 we know that

[{N C € : N € HlatA and N # (0)} = (0),

from which it follows trivially that we cannot have £ C N for every n.h.s. N of A,
and thus the proof is complete. O

3. Applications

In this section we set forth some important classes of operators to which The-
orem 2.4 applies, and thus we obtain new and better sufficient conditions on the
operator A in the matrix in (1.1) under which the operator T there has a n.h.s.

Definition 3.1. An operator A in B(H) will be said to belong to the class (CK)(or
(CK) (H)) if there exists a (nonzero) compact operator K in B(3) such that

0u(A) = 0,(K) = 0,(A") = 0,(K*) = &

and AKX = KA. (The notation (CK) arises from the phrase “commutes with a
compact operator”).

Proposition 3.2. (CK) (H) C (RIH) (H).
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Proof. Let A € (CK) (H) and commute with the (nonzero) compact operator K,
where
op(A) = 0p(K) = 0,(A%) = 0,(K) = 2.

Then A*K* = K*A* and by V. Lomonosov’s theorem ([9]), A has a n.h.s. M. Now
let N be an arbitrary n.h.s. for A and note that KN C N and that A|x commutes
with K. Moreover, K|y is a nonzero compact operator, so A|x has a n.h.s. It
follows easily by checking the requirements that A € (RIH). a

Corollary 3.3. Suppose A € (CK) (K) and B is an arbitrary operator in B(H).
If there exists X # 0 in B(H) such that AX = XB, then for every C € B(XH), the
operator Tc as in (1.1) has a n.h.s.

Proof. By Proposition 3.2, A € (RIH), and the result is then immediate from
Theorem 2.4. a

Corollary 3.4. Suppose A is any nonzero compact operator in B(H) and B is an
arbitrary operator there. If there exists a nonzero operator X such that AX = XB,
then for every C in B(H), the operator Tc as in (1.1) has a n.h.s.

Proof. If A (or A*) has nonempty point spectrum, then the finite dimensional
associated eigenspace is a n.h.s. for T, whereas otherwise, since A # 0, A € (CK)
and the result follows from Corollary 3.3. a

Remark 3.5. H.K. Kim in [6] raised the very interesting question of whether every
operator Tc in (1.1) such that A is a nonzero compact operator has a n.h.s. This
problem remains open still, and Corollary 3.4 above seems presently to be the best
result in the direction of showing that the answer may be “yes”. Note that if the
answer eventually turns out to be “yes”, then that theorem would be a beautiful
generalization of V. Lomonosov’s first theorem in [9], namely that every nonzero
compact operator in B(JH) has a n.h.s.

We now turn to another important class of operators pertinent to the operator
n (1.1), the treatment of which is parallel to that of the class (CK).

Definition 3.6. An operator A in B(H) will be said to belong to the class (CN)
(or (CN)(3H)) if there exists a (nonzero) normal operator N in B(H) not of uniform
multiplicity N such that

05(A) = 0,(N) = 0, (A") = 0, (N*) = @
and AN = NA.

It is well-known from the multiplicity theory of normal operators (cf., e.g., [2])
that every operator A in the commutant of a normal operator N as in Definition
3.6 is an m-normal operator or a direct sum of operators at least one of which is
an n-normal operator (for some n € N). And, via [4] and [3], all such operators
are known to have a n.h.s. N. Note that by Fuglede’s theorem, AN* = N*A, and
therefore NN C N and N*N C N. In other words, N is a reducing subspace for N
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and N|x is again a normal operator that commutes with A|x and A*|n. But then,
as above, A|x has a n.h.s. These remarks are sufficient to constitute a proof of the
following.

Corollary 3.7. Suppose A € (CN) (H) and B is an arbitrary operator in B(H). If
there exists a nonzero operator X such that AX = X B, then for every C € B(H)
the operator Te in (1.1) has a n.h.s.

We note in particular, that if A in Corollary 3.7 is a nonscalar normal operator,
then the conclusions of that corollary remain true for all operators T as in (1.1).

Remark 3.8. H.J. Kim also studied in [7] matrices T as in (1.1), where A is a
normal operator, and in some cases he obtained the existence of a n.h.s. for T¢.
(This topic was also considered in the paper [8].)

We close this note by posing some unsolved problems concerning hyperinvariant
subspaces for certain operators T¢ as in (1.1).

Problem 3.9. Let T¢ be as in (1.1), where A and C are compact and nonzero,
and B is an arbitrary operator. Does T have a n.h.s.?

Problem 3.10. Let T¢ be as in (1.1), where A has a n.h.s., B is an arbitrary
operator, and C is nonzero and has finite rank. Does T have a n.h.s.?

Problem 3.11. Let T¢ be as in (1.1), where A has a n.h.s., B is an arbitrary
operator, and C' = 14¢. Does T have a n.h.s.?
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