• Title/Summary/Keyword: Invariant Manifold

Search Result 125, Processing Time 0.021 seconds

VANISHING THEOREM ON SINGULAR MODULI SPACES

  • Cho, Yong-Seung;Hong, Yoon-Hi
    • Journal of the Korean Mathematical Society
    • /
    • v.33 no.4
    • /
    • pp.1069-1099
    • /
    • 1996
  • Let X be a smooth, simply connected and oriented closed fourmanifold such that the dimension $b_{2}^{+}(X)$ of a maximal positive subspace for the intersection form is greater than or equal to 3.

  • PDF

Scalar curvatures of invariant metrics

  • Park, Joon-Sik;Oh, Won-Tae
    • Journal of the Korean Mathematical Society
    • /
    • v.31 no.4
    • /
    • pp.629-632
    • /
    • 1994
  • Let (M, g) be a Riemannian manifold. The relation between a (pointwise) conformal metric of the metric g and the scalar curvature of this new metrics is investigated by Kazdan, Warner and Schoen (cf. [1, 4]).

  • PDF

INVARIANT OPEN SETS UNDER COCOMPACT AFFINE ACTIONS

  • Park, Kyeong-Su
    • Bulletin of the Korean Mathematical Society
    • /
    • v.36 no.1
    • /
    • pp.203-207
    • /
    • 1999
  • In this paper, we find a condition of an open subset of the affine space which admits a cocompact affine action. To do it, the asymptotic flag of an open convex subset is introduced and some applications to affine manifolds are presented.

  • PDF

HOMOLOGY 3-SPHERES OBTAINED BY SURGERY ON EVEN NET DIAGRAMS

  • Lee, Sang-Youl
    • Communications of the Korean Mathematical Society
    • /
    • v.27 no.4
    • /
    • pp.815-834
    • /
    • 2012
  • In this paper, we characterize surgery presentations for $\mathbb{Z}$-homology 3-spheres and $\mathbb{Z}/2\mathbb{Z}$-homology 3-spheres obtained from $S^3$ by Dehn surgery along a knot or link which admits an even net diagram and show that the Casson invariant for $\mathbb{Z}$-homology spheres and the ${\mu}$-invariant for $\mathbb{Z}/2\mathbb{Z}$-homology spheres can be directly read from the net diagram. We also construct oriented 4-manifolds bounding such homology spheres and find their some properties.

AFFINE YANG-MILLS CONNECTIONS ON NORMAL HOMOGENEOUS SPACES

  • Park, Joon-Sik
    • Honam Mathematical Journal
    • /
    • v.33 no.4
    • /
    • pp.557-573
    • /
    • 2011
  • Let G be a compact and connected semisimple Lie group, H a closed subgroup, g (resp. h) the Lie algebra of G (resp. H), B the Killing form of g, g the normal metric on the homogeneous space G/H which is induced by -B. Let D be an invarint connection with Weyl structure (D, g, ${\omega}$) in the tangent bundle over the normal homogeneous Riemannian manifold (G/H, g) which is projectively flat. Then, the affine connection D on (G/H, g) is a Yang-Mills connection if and only if D is the Levi-Civita connection on (G/H, g).

GRAPHICALITY, C0 CONVERGENCE, AND THE CALABI HOMOMORPHISM

  • Usher, Michael
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.6
    • /
    • pp.2043-2051
    • /
    • 2017
  • Consider a sequence of compactly supported Hamiltonian diffeomorphisms ${\phi}_k$ of an exact symplectic manifold, all of which are "graphical" in the sense that their graphs are identified by a Darboux-Weinstein chart with the image of a one-form. We show by an elementary argument that if the ${\phi}_k$ $C^0$-converge to the identity, then their Calabi invariants converge to zero. This generalizes a result of Oh, in which the ambient manifold was the two-disk and an additional assumption was made on the Hamiltonians generating the ${\phi}_k$. We discuss connections to the open problem of whether the Calabi homomorphism extends to the Hamiltonian homeomorphism group. The proof is based on a relationship between the Calabi invariant of a $C^0$-small Hamiltonian diffeomorphism and the generalized phase function of its graph.

A NOTE ON INDECOMPOSABLE 4-MANIFOLDS

  • Cho, Yong-Seung;Hong, Yoon-Hi
    • Bulletin of the Korean Mathematical Society
    • /
    • v.42 no.4
    • /
    • pp.817-828
    • /
    • 2005
  • In this note we show that there is an anti-symplectic involution $\sigma\;:\;X\;\to\;X$ on a simply-connected, closed, non-Kahler and symplectic 4-manifold X with a disjoint union of Riemann surfaces ${\amalg}^n_{i=1}{\Sigma}_i,\;n\;{\ge}\;2$ as a fixed point set. Also we show that its quotient X/$\sigma$ is homeomorphic to $\mathbb{CP}^2{\sharp}r\mathbb{CP}^2$ but not diffeomorphic to $\mathbb{CP}^2{\sharp}r\mathbb{CP}^2,\;r\;=\;b_2^-(X/{\sigma})$.

LIE IDEALS IN THE UPPER TRIANGULAR OPERATOR ALGEBRA ALG𝓛

  • LEE, SANG KI;KANG, JOO HO
    • Journal of applied mathematics & informatics
    • /
    • v.36 no.3_4
    • /
    • pp.237-244
    • /
    • 2018
  • Let ${\mathcal{H}}$ be an infinite dimensional separable Hilbert space with a fixed orthonormal base $\{e_1,e_2,{\cdots}\}$. Let L be the subspace lattice generated by the subspaces $\{[e_1],[e_1,e_2],[e_1,e_2,e_3],{\cdots}\}$ and let $Alg{\mathcal{L}}$ be the algebra of bounded operators which leave invariant all projections in ${\mathcal{L}}$. Let p and q be natural numbers (p < q). Let ${\mathcal{A}}$ be a linear manifold in $Alg{\mathcal{L}}$ such that $T_{(p,q)}=0$ for all T in ${\mathcal{A}}$. If ${\mathcal{A}}$ is a Lie ideal, then $T_{(p,p)}=T_{(p+1,p+1)}={\cdots}=T_{(q,q)}$ and $T_{(i,j)}=0$, $p{\eqslantless}i{\eqslantless}q$ and i < $j{\eqslantless}q$ for all T in ${\mathcal{A}}$.

COMPLEX SUBMANIFOLDS IN REAL HYPERSURFACES

  • Han, Chong-Kyu;Tomassini, Giuseppe
    • Journal of the Korean Mathematical Society
    • /
    • v.47 no.5
    • /
    • pp.1001-1015
    • /
    • 2010
  • Let M be a $C^{\infty}$ real hypersurface in $\mathbb{C}^{n+1}$, $n\;{\geq}\;1$, locally given as the zero locus of a $C^{\infty}$ real valued function r that is defined on a neighborhood of the reference point $P\;{\in}\;M$. For each k = 1,..., n we present a necessary and sufficient condition for there to exist a complex manifold of dimension k through P that is contained in M, assuming the Levi form has rank n - k at P. The problem is to find an integral manifold of the real 1-form $i{\partial}r$ on M whose tangent bundle is invariant under the complex structure tensor J. We present generalized versions of the Frobenius theorem and make use of them to prove the existence of complex submanifolds.