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HOMOLOGY 3-SPHERES OBTAINED BY SURGERY ON

EVEN NET DIAGRAMS

Sang Youl Lee

Abstract. In this paper, we characterize surgery presentations for Z-
homology 3-spheres and Z/2Z-homology 3-spheres obtained from S3 by
Dehn surgery along a knot or link which admits an even net diagram
and show that the Casson invariant for Z-homology spheres and the µ-
invariant for Z/2Z-homology spheres can be directly read from the net
diagram. We also construct oriented 4-manifolds bounding such homology
spheres and find their some properties.

1. Introduction

A framed link in S3 of r components is a disjoint collection of r smoothly
imbedded circles K1, . . . ,Kr in S3 with rational numbers pi

qi
or ∞ = 1

0 as-

sociated with each imbedded circle Ki. In [8] and [15], Lickorish and Wal-
lace showed that any orientable 3-manifold can be obtained from S3 by Dehn
surgery along a framed link with integral framings. Any presentation of a 3-
manifold M by surgery on a framed link is called a surgery presentation of the
3-manifold M . It is well known that a closed oriented 3-manifold is an integral
homology 3-sphere if and only if it can be obtained by Dehn surgery on an
algebraically split link in S3 for which all components are framed by ±1 (cf.
[4, 9]).

In 1952, Rokhlin introduced a theorem asserting that ifM is a smooth closed
oriented spin 4-manifold, then the signature of M is divisible by 16 [10]. This
theorem is now known as the Rokhlin Theorem, which has played a significant
role in the study of 4-dimensional topology and also gives rise the µ-invariant
for Z/2Z-homology, for short, Z/2-homology 3-spheres whose properties are
related to the most fundamental questions of the manifold theory such as the
triangulability of topological manifolds [2, 5].
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In 1984-85, Casson introduced an integral valued invariant λc : S → Z from
the set S of oriented Z-homology 3-spheres to the set Z of integers, which
reduces modulo 2 to the µ-invariant, by using representations from their fun-
damental groups into SU(2) [1].

In this paper, we characterize surgery presentations for Z-homology 3-spheres
and Z/2-homology 3-spheres obtained from S3 by Dehn surgery along a knot or
link which admits an even net diagram D and show that the Casson invariant
for Z-homology spheres and the µ-invariant for Z/2-homology spheres can be
directly calculated from the given net diagram D. We also construct oriented
4-manifolds bounding such homology spheres and give some properties.

This paper is organized as follows. In Section 2, we review some fundamental
notions for surgery presentations for closed 3-manifolds. In Section 3, we char-
acterize surgery presentations for Z- and Z/2-homology 3-spheres obtained by
Dehn surgery along even net diagrams. We also construct 4-manifolds bound-
ing the Z- or Z/2-homology spheres obtained from an even net diagram and
give some properties of their intersection forms. In Section 4, we give the for-
mulas for the Casson invariant for Z-homology 3-spheres and the µ-invariant
for Z/2-homology 3-spheres obtained by Dehn surgery along even net diagrams,
which show that the invariants can be directly calculated from the given net
diagrams. In Section 5, we give an infinite family of Z- and Z/2-homology
3-spheres whose Casson invariants and the µ-invariants are vanishing, and are
not vanishing.

2. Surgery presentation

Let Σ be an integral homology 3-sphere. A framed link L in Σ of r com-
ponents is a disjoint collection K1 ∪ · · · ∪Kr of r smoothly imbedded circles,
K1, . . . ,Kr, in Σ with rational numbers pi

qi
or ∞ = 1

0 , called the framing, as-

sociated with each imbedded circle Ki. Throughout this paper, we denote the
oriented closed 3-manifold obtained from Σ by a Dehn surgery along a framed
link L with a framing (p1

q1
, . . . , pr

qr
) by M3(K1∪· · ·∪Kr;

p1

q1
, . . . , pr

qr
; Σ), or simply

M3(L; Σ), otherwise specified. When Σ = S3, the 3-sphere, we shall delete S3

from the notations for short. If all the framings pi

qi
are integers or ∞, a Dehn

surgery on Σ along a framed link L is called an integral surgery, otherwise it is
called a rational surgery. Lickorish [8] and Wallace [15] showed that any closed
orientable 3-manifold can be obtained by an integral surgery on S3 along a
framed link in S3.

A framed link L in S3 with integral framings determines an orientable 4-
manifold M4(L) obtained by adding 2-handles to the 4-ballD4 along the circles
in L via the framings. Note that the resulting 4-manifold makes no difference
how we orient the circles, and an orientation for M4(L), and so ∂M4(L), is
determined by extending a fixed orientation on D4 over M4(L).

Any presentation of a 3-manifold M by surgery on a framed link is called a
surgery presentation of M . There are many surgery presentations for the same
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manifold. Any two integeral surgery presentations of the same manifold can
be related by a finite sequence of Kirby moves [6]. Any two rational surgery
presentations of the same manifold can be related by a finite sequence of gener-
alized Kirby moves [3, 11, 12]. For our convenience, we review the Kirby moves
on a framed link L = K1 ∪ · · · ∪Kr in S3 which do not change the 3-manifold
M3(L) obtained by Dehn surgery on S3 along the framed link L:

Kirby Move K1. Add or delete an unknotted circle with framing 1 or −1,
which belongs to an imbedded 3-ball D3 in S3 that does not intersect the other
components of L, see Figure 1.

L ←→ L′ = L
⊔ ±1

Figure 1

Kirby Move K2. Add one component of the link L to another as follows.
Let Ki and Kj be the two components of L with framings ni and nj , respec-

tively, and let K̃j be a longitude defining the framing nj of the component Kj ,

that is, lk(Kj, K̃j) = nj , where lk denotes the linking number. Now, replace

Ki ∪Kj with K ′
i ∪Kj , where K ′

i = Ki ♯b K̃j, the band connected sum of Ki

and K̃j, and b is any band missing the other components of L. The rest of the
link L remains unchanged, see Figure 2.

ni

Ki

nj

Kj ←→ bK ′
i Kj K̃j

n′
i

nj

full twists

✥✥✥

✣✣
✣nj

Figure 2

The framings of all components but K ′
i in L′ are preserved, while the framing

n′
i of the new component K ′

i is given by the formula:

(2.1) n′
i = ni + nj + 2lk(Ki,Kj).

Note that the Kirby move K1 corresponds in the 4-manifold M4(L) to taking
connected sum with or splitting off a copy of the complex projective plane CP 2

with a canonical orientation or CP
2
with reversed orientation, depending on

the framing +1 or −1. The Kirby move K2 corresponds in M4(L) to sliding
the i-th 2-handle over the j-th 2-handle via the band b.
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Two framed links L and L′ in S3 are said to be ∂-equivalent if the link L′

can be obtained from L by a finite sequence of Kirby moves of types K1 and
K2; denoted by L ∼

∂
L′. In [6], Kirby proved that for given two framed links L

and L′ in S3, L ∼
∂
L′ if and only if ∂M4(L) is diffeomorphic to ∂M4(L′) by an

orientation preserving diffeomorphism.
On the other hand, Fenn and Rourke showed [3] that the Kirby moves K1

and K2 are equivalent to the K-move as shown in Figure 3.

· · ·

· · ·

K0

±1

L

←→
one full left or

right hand twist

· · ·

· · ·

L′

Figure 3

Here, if ni is the framing of the component Ki in L, then the framing n′
i of

the corresponding component K ′
i in L′ is given by the formula:

n′
i = ni ∓ lk(K0,Ki)

2.

Let L = K1∪· · ·∪Kr be an oriented framed link in S3 whose i-th component
Ki is framed by pi

qi
. Then the symmetric rational matrix Λ(L) = (ℓij)i,j=1,2,...,r

with the entries

ℓij =

{ pi

qi
, if i = j;

lk(Ki,Kj), if i 6= j,

is called the linking matrix for L. It is well known that the symmetric inte-
gral matrix Λ(L) = (qiℓij)i,j=1,2,...,r is a presentation matrix for the homology
H1(M

3(L);Z). We remark that the 3-manifold M3(L) is an integral homol-
ogy 3-sphere if and only if the determinant of Λ(L) is equal to ±1, namely,
det(Λ(L)) = ±1 or, equivalently, det(Λ(L)) = ± 1

q1q2···qr
.

Let M be a compact oriented connected and simply connected 4-manifold
with ∂M 6= ∅. The intersection number a · b of 2-cycles a and b induces a
symmetric bilinear form

(2.2) QM : H2(M ;Z)⊗H2(M ;Z)→ Z,

which is called the intersection form of M . Its signature, that is the number
of positive eigenvalues minus the number of negative eigenvalues, is called the
signature ofM and is denoted by sign(M). It is well known that the intersection
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form QM in (2.2) is unimodular if and only if ∂M is an integral homology 3-
sphere. Furthermore, let L be an integral framed link in S3 and letM = M4(L)
be the 4-manifold with boundary ∂M4(L) = M3(L) obtained by Dehn surgery
on S3 along L. Then QM is isomorphic to the linking matrix Λ(L) for L.
Hence the 3-manifold ∂M4(L) = M3(L) is an integral homology 3-sphere if
and only if the determinant of Λ(L) is equal to ±1, namely, det(Λ(L)) = ±1,
and sign(M4(L)) = sign(Λ(L)). For more details, see [13, 14].

3. Dehn surgery on even net diagrams

In [7], Seo and the author showed that any (oriented) link L in S3 can be
represented by a link diagram of the form as shown in Figure 4 or Figure 5. In
the figures, each tangle labeled aij(1 ≤ i ≤ m, 1 ≤ j ≤ n) denotes a 2-tangle as

shown in Figure 6. Given a link L in S3, such a link diagram D in Figure 4
or Figure 5 representing L according as m is even or m is odd is called a net

presentation of L or a net diagram of L, and is denoted byD = (aij)1≤i≤m,1≤j≤n

in a matrix notation.

am1

am−1
1

...

a31

a21

a11

am2

am−1
2

...

a32

a22

a12

am−1
3

a33

a13

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

amn

am−1
n

...

a3n

a2n

a1n

...
...

//

Figure 4. D; m is even

Definition 3.1. Let D = (aij)1≤i≤m,1≤j≤n be a net diagram of a link in S3.

Then D is said to be even if all aij ’s are even, and D is said to be odd if all aij ’s
are odd.

Remark 3.2. (1) Any link L in S3 can always be represented by an odd net
diagram D = (aij)1≤i≤m,1≤j≤n with aij = ±1 [7]. It is worth mentioning that a

link in S3 may be represented by a net diagram which is of the even type.
(2) Let D = (aij)1≤i≤m,1≤j≤n be an even net diagram of a link L in S3 with

r components. Then it follows at once from the diagrams in Figures 4 and 5
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am1

am−1
1

...

a31

a21

a11

am2

am−1
2

...

am3

a32

a22

a12

a33

a13

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

amn

am−1
n

...

a3n

a2n

a1n

...
...

//

Figure 5. D; m is odd

aij =
...

aij > 0

, ...

aij < 0

,

aij = 0

Figure 6

that m is an even integer if and only if r = 1, that is, D is a knot diagram, and
that m is an odd integer if and only if r = n.

(3) Let D = (aij)1≤i≤m,1≤j≤n be an odd net diagram of a link L in S3 with
r components. Then it is not difficult to see from the diagrams in Figures 4
and 5 that gcd(m+ 1, n) = r.

Let D = (aij)1≤i≤m,1≤j≤n = D1 ∪ · · · ∪Dr(r ≥ 1) be any oriented even net

diagram of an integral framed link L in S3 with framings p1, . . . , pr. We define

D̂ to be a framed link diagram obtained from D by replacing each 2-tangle
labeled aij(6= 0) with a new 2-tangle Ei

j as shown in Figure 7. The framing p̂k

on D̂k (k = 1, . . . , r) in D̂ corresponding to Dk in D is defined by the following
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formula. For k = 1, . . . , r,

(3.3) p̂k = pk −
m∑

i=1

n∑

j=1

aij
2
lk(D̂i, D̂

ij
1 )2.

· · · · ·ai
j

|ai
j
|

s = 1
2 |a

i
j |

ai
j

|ai
j
|
2

ai
j

|ai
j
|
2

> > > > >

D̂ij
1 D̂ij

2 D̂ij
s

Figure 7. Ei
j

∼
∂

1
, ∼

∂

−1

Figure 8

Theorem 3.3. Let L = K1∪· · ·∪Kr(r ≥ 1) be a framed link in S3 with integral

framings p1, . . . , pr which has an even net diagram D = (aij)1≤i≤m,1≤j≤n =

D1 ∪ · · · ∪ Dr. Let L̂ be the framed link in S3 represented by D̂. Then L̂ is

∂-equivalent to L.

Proof. We first observe that the K-move for two vertical strands as shown in
Figure 8 produces the ∂-equivalences as shown in Figure 9 at the site of each
tangle aij . Using the Kirby move K2, we obtain the ∂-equivalence as illustrated

in Figure 10 from which we can replace each tangle bij in Figure 9 to the tangle

Ei
j .

To compute the framings on D̂, we first choose an arbitrary orientation for
D. Let D be the framed link diagram obtained from D by replacing each 2-
tangle labeled aij 6= 0 with new 2-tangle bij in Figure 9, and let D1, . . . , Dr be

the components in D corresponding to D1, . . . , Dr in D, respectively. Then the
orientation for D induces an orientation for each Dk(1 ≤ k ≤ r) in D except

new added unknotted circles D
ij

u (1 ≤ u ≤ s =
|ai

j |

2 ) in bij . Now we take the

orientation for each component D
ij

u in D alternately starting D
ij

1 as shown in
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Figure 9. It follows that this orientation for D induces an orientation for D̂

which is the same on the components D̂ij
u (1 ≤ u ≤ s) ⊂ Ei

j in D̂ in Figure 7,
after the transformations as illustrated in Figure 10.

Using Figure 9 and (2.1), it is not difficult to see that the framing p̄k on
Dk is given by the right hand side of the formula in (3.3). Since the linking

numbers of all pairs of the unknotted circles D
ij

u (1 ≤ u ≤ s) in the tangle bij are

all zero, the transformation in Figure 10 gives the framing
ai
j

|ai
j
|
2 on D̂ij

u . Also,

the transformation does not change the framing on Dk for each k = 1, . . . , r

and hence p̂k = p̄k for k = 1, . . . , r. This shows that L ∼
∂
L̂, completing the

proof. �

...

∼
∂

1

<

1
>

...

1
>

aij > 0 bij

D
ij

1

D
ij

s−1

D
ij

s

,

...

∼
∂

−1

−1

<

>

... s =
|ai

j|

2

−1
>

aij < 0 bij

D
ij

1

D
ij

s−1

D
ij

s

Figure 9

±1
<

±1 >

∼
∂

±2
<

±1 >

>

∼
amb. iso.

±1 >

>
±2

Figure 10

Definition 3.4. Let D = (aij)1≤i≤m,1≤j≤n be an even net diagram of an

integral framed link in S3. Then the framed link diagram D̂ is called the
blow-up of D.
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Let D = (aij)1≤i≤m,1≤j≤n be any oriented even net diagram. For the rest

of the paper we refer the orientation for D and D̂ described in the proof of
Theorem 3.3 the induced orientation by D. Also, let σ+(D) denote the sum of
all positive aij ’s and let σ−(D) denote the sum of all the absolute values |aij |

with aij < 0, and thus

σ+(D) + σ−(D) =

m∑

i=1

n∑

j=1

|aij |.

Lemma 3.5. Let L = K1∪· · ·∪Kr(r ≥ 1) be a framed link in S3 with integral

framings p1, . . . , pr which admits an even net diagram D = (aij)1≤i≤m,1≤j≤n

and let L̂ be the framed link in S3 represented by the blow-up D̂ of D. Let Λ(L̂)

be the linking matrix for L̂.

(1) If m is even, then there exists a unimodular integral matrix U such that

UΛ(L̂)UT = (p1)⊕ Iσ+(D)

2

⊕ (−1) Iσ−(D)

2

.

(2) If m is odd, then there exists a unimodular integral matrix U such that

(3.4) UΛ(L̂)UT =




p̂1 0 · · · 0
0 p̂2 · · · 0
...

...
. . .

...

0 0 · · · p̂n


⊕ Iσ+(D)

2

⊕ (−1) Iσ−(D)

2

,

where Iσ±(D)

2

denotes the (σ±(D)
2 × σ±(D)

2 ) identity matrix, UT denotes the

transpose matrix of U , and

(3.5) p̂k = pk −
1

2

m+1
2∑

ℓ=1

(
a2ℓ−1
k + a2ℓ−1

k+1

)
, k = 1, . . . , n.

Proof. First, ifm is even, then it is obvious that D is a knot diagram with fram-
ing p1. Choose an orientation for D as shown in Figure 4. Then it is obvious

from Figure 9 thatD is an algebraically split link with d = (
∑m

i=1

∑n

j=1

|ai
j|

2 )+1

components and so it is straightforward that Λ(D) is the d × d diagonal ma-
trix whose diagonal entries are the framings of the components. For each pair

(i, j), let Iij denote the (
|ai

j |

2 ×
|ai

j |

2 ) identity matrix. Then for some unimodular
integral matrices U1 and U2, we have

U2Λ(D)UT
2 = (p1)⊕

( m⊕

i=1

n⊕

j=1

aij
|aij |

Iij

)
,

U1U2Λ(D)UT
2 UT

1 = (p1)⊕ Iσ+(D)

2

⊕ (−1) Iσ−(D)

2

.

(3.6)
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Next, suppose that m is odd. Then we know that r = n, that is, D
is a framed link diagram with exactly n components D1, . . . , Dn with fram-
ings p1, . . . , pn. We choose an orientation for D as shown in Figure 11. Let

a2r−1
1

a2r−2
1

a31

a21

a11

a2r−1
2

a2r−2
2

a32

a22

a12

a2r−1
3

a33

a13

a2r−1
n

a2r−2
n

a3n

a2n

a1n
· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

...
...

...

...
...

// // //

oo oo oo

D1 D2 Dn

D1 D2 Dn

Figure 11

D1, . . . , Dn be the components of D with the induced orientation by D, corre-

sponding to D1, . . . , Dn in D, and let D
ij

1 , . . . , D
ij

sij
(sij =

|ai
j |

2 ) be the compo-

nents of bij ⊂ D as shown in Figure 9. We observe that for each pair (i, j) and
u = 1, . . . , sij ,

lk(D
ij

u , Dk) =





(−1)u+1, if i is odd and j = k;
(−1)u, if i is odd and j = k + 1;
0, otherwise.

This gives

lk(D
ij

u , Dk)
2 =

{
1, if i is odd and j = k, k + 1;
0, otherwise.

Let p̄1, . . . , p̄n denote the framings of D1, . . . , Dn, respectively. By (2.1), we
obtain that for each k = 1, . . . , n,

p̄k = pk −
m∑

i=1

n∑

j=1

sij∑

u=1

aij
|aij |

lk(D
ij

u , Dk)
2

= pk −

m+1
2∑

ℓ=1

( s(2ℓ−1)k∑

u=1

a2ℓ−1
k

|a2ℓ−1
k |

+

s(2ℓ−1)(k+1)∑

u=1

a2ℓ−1
k+1

|a2ℓ−1
k+1 |

)
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= pk −

m+1
2∑

ℓ=1

a2ℓ−1
k + a2ℓ−1

k+1

2
.

Since the transformation in Figure 10 does not change the framing on Dk for
all k = 1, . . . , n, we get p̂k = p̄k and hence

p̂k = pk −

m+1
2∑

ℓ=1

a2ℓ−1
k + a2ℓ−1

k+1

2
, k = 1, . . . , n.

Now, for two pairs (i, j) and (k, l) with 1 ≤ i, k ≤ m, 1 ≤ j, l ≤ n, let

Λij
kl = (γuv)

1≤u≤
|ai

j
|

2 ,1≤v≤
|ak

l
|

2

be the (
|ai

j |

2 ×
|ak

l |
2 ) integral matrix defined by

γuv =





ai
j

|ai
j
|
, if (i, j) = (k, l) and u = v;

lk(D
ij

u , D
kl

v ), otherwise.

Observe that if either (i, j) 6= (k, l) or u 6= v, then lk(D
ij

u , D
kl

v ) = 0. This

gives that for all pairs (i, j) and (k, l) with (i, j) 6= (k, l), the matrix Λij
kl is

the (
|ai

j |

2 ×
|ak

l |
2 ) zero matrix, and for (i, j) = (k, l), Λij

kl = Λij
ij is the

|ai
j|

2 ×
|ai

j |

2
diagonal matrix given by

Λij
ij =




ai
j

|ai
j
|

0 · · · 0

0
ai
j

|ai
j
|
· · · 0

...
...

. . .
...

0 0 · · ·
ai
j

|ai
j
|




=
aij
|aij |

Iij .

Let

Λ0 =




p̄1 0 · · · 0
0 p̄2 · · · 0
...

...
. . .

...
0 0 · · · p̄n


 .

For each pair (i, j) with 1 ≤ i ≤ m, 1 ≤ j ≤ n, let

Λi
j = (γuv)

1≤u≤n,1≤v≤
|ai

j
|

2

be the (n×
|ai

j |

2 ) matrix defined by

γuv = lk(Du, D
ij

v ).
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Then it is straightforward from Figure 9 that for each j = 1, . . . , n and ℓ =
1, . . . , m−1

2 , Λ2ℓ
j is the zero matrix. For k = 1, . . . , m+1

2 , we have

Λ2k−1
1 =




a
2k−1
1

|a2k−1
1 |

−
a
2k−1
1

|a2k−1
1 |

a
2k−1
1

|a2k−1
1 |

· · · (−1)s2k−11
a
2k−1
1

|a2k−1
1 |

0 0 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

−
a
2k−1
1

|a2k−1
1 |

a
2k−1
1

|a2k−1
1 |

−
a
2k−1
1

|a2k−1
1 |

· · · (−1)s2k−11+1 a
2k−1
1

|a2k−1
1 |




,

Λ2k−1
2 =




a
2k−1
2

|a2k−1
2 |

−
a
2k−1
2

|a2k−1
2 |

a
2k−1
2

|a2k−1
2 |

· · · (−1)s
2k−12 a

2k−1
2

|a2k−1
2 |

−
a
2k−1
2

|a2k−1
2 |

a
2k−1
2

|a2k−1
2 |

−
a
2k−1
2

|a2k−1
2 |

· · · (−1)s
2k−12+1 a

2k−1
2

|a2k−1
2 |

0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0
0 0 0 · · · 0




,

Λ2k−1
3 =




0 0 0 · · · 0
a
2k−1
3

|a2k−1
3 |

−
a
2k−1
3

|a2k−1
3 |

a
2k−1
3

|a2k−1
3 |

· · · (−1)s
2k−13 a

2k−1
3

|a2k−1
3 |

−
a
2k−1
3

|a2k−1
3 |

a
2k−1
3

|a2k−1
3 |

−
a
2k−1
3

|a2k−1
3 |

· · · (−1)s
2k−13+1 a

2k−1
3

|a2k−1
3 |

...
...

...
. . .

...
0 0 0 · · · 0
0 0 0 · · · 0




,

...

Λ2k−1
n =




0 0 0 · · · 0
0 0 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

a2k−1
n

|a2k−1
n |

−
a2k−1
n

|a2k−1
n |

ak−1
n

|a2k−1
n |

· · · (−1)s
2k−1n a2k−1

n

|a2k−1
n |

− a2k−1
n

|a2k−1
n |

a2k−1
n

|a2k−1
n |

− a2k−1
n

|a2k−1
n |

· · · (−1)s
2k−1n+1 a2k−1

n

|a2k−1
n |




.

Then the linking matrix Λ(D) of D with respect to the order for the pairs

(1, 1), . . . , (1, n), (2, 1), . . . , (2, n), . . . , (m, 1), . . . , (m,n)
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is given by the (mn+ 1)× (mn+ 1) block matrix:

Λ(D) =




Λ0 Λ1
1 Λ1

2 Λ1
3 · · · Λm

n

(Λ1
1)

T Λ11
11 O O · · · O

(Λ1
2)

T O Λ12
12 O · · · O

(Λ1
3)

T O O Λ13
13 · · · O

...
...

...
...

. . .
...

(Λm
n )T O O O · · · Λmn

mn




.

It is not difficult to see that for unimodular integral matrices U1 and U2,

U2Λ(D)UT
2 = Λ0 ⊕

( m⊕

i=1

n⊕

j=1

Λij
ij

)
= Λ0 ⊕

( m⊕

i=1

n⊕

j=1

aij
|aij |

Iij

)
,

U1U2Λ(D)UT
2 UT

1 = Λ0 ⊕ Iσ+(D)

2

⊕ (−1) Iσ−(D)

2

.

(3.7)

On the other hand, the effect of the Kirby move K1 replaces the linking matrix
A to A ⊕ (±1), and the Kirby move K2 that slides Ki over Kj replaces the
linking matrix A to A′ obtained from A by adding (or subtracting) the j-th
row to (from) the i-th row and the j-th column to (from) the i-th column. This
facts, together with (3.6) and (3.7), implies the desired assertions (1) and (2).
This completes the proof of Lemma 3.5. �

For a given integer p, we define

ǫ(p) =

{ p
|p| , if p 6= 0;

0, if p = 0.

Theorem 3.6. Let L = K1∪· · ·∪Kr(r ≥ 1) be a framed link in S3 with integer

framings p1, . . . , pr which admits an even net diagram D = (aij)1≤i≤m,1≤j≤n

and let L̂ be the framed link in S3 represented by the blow-up D̂ of D. Let Λ(L)

and Λ(L̂) be the linking matrices for L and L̂, respectively.

(1) If m is even, then r = 1 and

|det(Λ(L))| = |det(Λ(L̂))| = |p1|,

sign(Λ(L̂)) =

m∑

i=1

n∑

j=1

aij
2

+ ǫ(p1).

(2) If m is odd, then r = n and

|det(Λ(L))| = |det(Λ(L̂))| = |
n∏

k=1

p̂k|,

sign(Λ(L̂)) =
m∑

i=1

n∑

j=1

aij
2

+
n∑

k=1

ǫ(p̂k),

where p̂1, . . . , p̂n are the integers in (3.5).
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Proof. (1) Suppose that m is even. By Lemma 3.5(1), we obtain that r = 1
and

|det(Λ(L̂))| = |p1|,

sign(Λ(L̂)) = ǫ(p1) +
σ+(D)− σ−(D)

2
=

m∑

i=1

n∑

j=1

aij
2

+ ǫ(p1).

(2) Suppose that m is odd. By Lemma 3.5(2), we have that r = n and

| det(Λ(L̂)) |= |
n∏

k=1

p̂k|,

sign(Λ(L̂)) =

n∑

k=1

ǫ(p̂k) +
σ+(D)− σ−(D)

2
=

m∑

i=1

n∑

j=1

aij
2

+

n∑

k=1

ǫ(p̂k).

Finally, it follows from Theorem 3.3 that L and L̂ are ∂-equivalent and hence

| det(Λ(L)) |=| det(Λ(L̂)) |. This completes the proof. �

Theorem 3.7. Let D = (aij)1≤i≤m,1≤j≤n be an even net diagram of a link L

in S3 of components K1, . . . ,Kr with integer framings p1, . . . , pr. Then M3(L)
is a Z-homology 3-sphere if and only if either r = 1 and p1 = ±1 or r = n and

(3.8)

n∏

k=1

(
pk −

1

2

m+1
2∑

ℓ=1

(a2ℓ−1
k + a2ℓ−1

k+1 )

)
= ±1.

Proof. Let D = (aij)1≤i≤m,1≤j≤n be an even net diagram of a link L in S3

of components K1, . . . ,Kr with integer framings p1, . . . , pr. and let Λ(L) and

Λ(L̂) be the linking matrices for L and L̂, respectively.
Suppose that M3(L) is a Z-homology 3-sphere. Then det(Λ(L)) = ±1. Note

that m is either even or odd. If m is even, then it follows from Theorem 3.6
(1) that r = 1 and Λ(L) = (p1). This gives p1 = ±1. Now if m is odd, then
it follows from Theorem 3.6(2) that r = n and |det(Λ(L))| = |

∏n

k=1 p̂k| = ±1.
This gives the equality (3.8).

Conversely, we first suppose that m is even and p1 = ±1. By Lemma 3.5,
the matrix

Λ(L̂) = (±1)⊕ Iσ+(D)

2

⊕ (−1) Iσ−(D)

2

is a presentation matrix forH1(∂M
4(L̂);Z). This implies thatH1(∂M

4(L̂);Z)=

0. By Theorem 3.3, L is ∂-equivalent to L̂, ∂M4(L̂) and ∂M4(L) are diffeo-

morphic, and hence H1(M
3(L);Z) = H1(∂M

4(L);Z) = H1(∂M
4(L̂);Z) = 0.

Now we suppose that m is odd and the equality (3.8) holds. Then for
k = 1, . . . , n, we have

p̂k = pk −
1

2

m+1
2∑

ℓ=1

(a2ℓ−1
k + a2ℓ−1

k+1 ) = ±1.
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By Lemma 3.5, the matrix

Λ(L̂) = (±1)In ⊕ Iσ+(D)

2

⊕ (−1) Iσ−(D)

2

is a presentation matrix forH1(∂M
4(L̂);Z). This implies thatH1(∂M

4(L̂);Z) =
0. By a similar argument as above, we obtain H1(M

3(L);Z) = 0. This com-
pletes the proof. �

Theorem 3.8. Let D = (aij)1≤i≤m,1≤j≤n be an even net diagram of a link L

in S3 of components K1, . . . ,Kr with integer framings p1, . . . , pr. Then M3(L)
is a Z/2-homology 3-sphere if and only if either r = 1 and p1 is odd or r = n
and

(3.9)

n∏

k=1

(
pk −

1

2

m+1
2∑

ℓ=1

(a2ℓ−1
k + a2ℓ−1

k+1 )

)

is an odd integer.

Proof. Let D = (aij)1≤i≤m,1≤j≤n be an even net diagram of a link L in S3 of

components K1, . . . ,Kr with integer framings p1, . . . , pr and let Λ(L) and Λ(L̂)

be the linking matrices for L and L̂, respectively.
Suppose that M3(L) is a Z/2-homology 3-sphere. Then det(Λ(L)) must

be an odd integer. Note that m is either even or odd. If m is even, then it
follows from Theorem 3.6(1) that r = 1 and Λ(L) = (p1). This gives p1 is
odd. Now if m is odd, then it follows from Theorem 3.6(2) that r = n and
|det(Λ(L))| = |

∏n

k=1 p̂k| is odd.
Conversely, we first suppose that m is even and p1 is odd. By Lemma 3.5,

the matrix

Λ(L̂) = (p1)⊕ Iσ+(D)

2

⊕ (−1) Iσ−(D)

2

is a presentation matrix forH1(∂M
4(L̂);Z). This implies thatH1(∂M

4(L̂);Z/2)

vanishes. By Theorem 3.3, L is ∂-equivalent to L̂, ∂M4(L̂) and ∂M4(L) are
diffeomorphic, and hence

H1(M
3(L);Z/2) = H1(∂M

4(L);Z/2) = H1(∂M
4(L̂);Z/2) = 0.

Now we suppose that m is odd and the integer in (3.9) is odd. Then for
k = 1, . . . , n, the integer

p̂k = pk −
1

2

m+1
2∑

ℓ=1

(a2ℓ−1
k + a2ℓ−1

k+1 )

must be odd. The matrix (3.4) in Lemma 3.5 is a presentation matrix for

H1(∂M
4(L̂);Z). Hence H1(∂M

4(L̂);Z/2) = 0, and thus H1(M
3(L);Z/2) = 0,

completing the proof. �
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Corollary 3.9. Let L = K1∪· · ·∪Kr(r ≥ 1) be a framed link in S3 with integer

framings p1, . . . , pr which admits an even net diagram D = (aij)1≤i≤m,1≤j≤n

and let L̂ be the framed link in S3 represented by the blow-up D̂ of D. Then

sign(M4(L̂))) =





m∑

i=1

n∑

j=1

aij
2

+ ǫ(p1), if m is even;

m∑

i=1

n∑

j=1

aij
2

+
n∑

k=1

ǫ(p̂k), if m is odd,

where p̂1, . . . , p̂r are the integers in (3.5).
In particular, if M3(L) is a Z-homology or a Z/2-homology 3-sphere, then

the rank of the intersection form Q
L̂
= Q

M4(L̂) of M
4(L̂) is given by

rank Q
L̂
= r +

m∑

i=1

n∑

j=1

|aij |

2
.

Proof. By Theorems 3.6, 3.7 and 3.8, the assertion follows immediately. �

4. The µ-invariant and the Casson invariant

Let M be an oriented Z/2-homology 3-sphere. Then it has a unique spin
structure. Choose a smooth compact oriented spin 4-manifold X such that
∂X = M . The µ-invariant, µ(M), of M is a rational residue modulo 2 defined
by

µ(M) =
sign(X)

8
(mod 2).

We note that if M is a Z-homology sphere, then sign(X) is divisible by 8 so
that µ(M) = 0 or 1 modulo 2. For more details, see [13, 14]. For a given a knot
K in S3 and a reduced fraction p

q
, it is well known that the manifold M3(K; p

q
)

is a Z/2-homology 3-sphere if and only if p is odd. Let ∆K(t) = ∆K;Σ(t) be
the Alexander polynomial of K normalized so that ∆K(1) = 1 and ∆K(t) =
∆K(t−1). Then it follows from [14, Theorem 2.13] that for every odd p,

(4.10) µ(M3(K;
p

q
)) = −µ(L(p, q)) +

q

2p
∆′′

K(1) (mod 2),

where L(p, q) is the lens space obtained by −p
q
-surgery on an unknot in S3 and

∆′′
K(1) is the second derivative of ∆K(t) evaluated at t = 1. For the µ-invariant

µ(L(p, q)) of the lens space L(p, q), we refer to [14, Corollary 2.24].

Theorem 4.1. Let D = (aij)1≤i≤2r,1≤j≤n be an even net diagram of a knot K

in S3. For any odd p,

µ(M3(K;
p

q
)) = −µ(L(p, q)) +

q

4p

n∑

j=1

r∑

ℓ=1

ℓ∑

k=1

a2ℓj

(
a2k−1
j + a2k−1

j+1

)
(mod 2)
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where a2k−1
n+1 = a2k−1

1 for each k = 1, 2, . . . , ℓ. In particular,

(4.11) µ(M3(K;
1

q
)) =

q

4

n∑

j=1

r∑

ℓ=1

ℓ∑

k=1

a2ℓj

(
a2k−1
j + a2k−1

j+1

)
(mod 2).

Proof. Since p is odd, M3(K; p
q
) is a Z/2-homology 3-sphere. Hence we obtain

from (4.10) that

µ(M3(K;
p

q
)) = −µ(L(p, q)) +

q

2p
∆′′

K(1) (mod 2),

µ(M3(K;
1

q
)) =

q

2
∆′′

K(1) (mod 2)
(4.12)

because µ(L(1, q)) = 0. But it follows from [7, Theorem 3.5] that

(4.13) ∆′′
K(1) =

1

2

n∑

j=1

r∑

ℓ=1

ℓ∑

k=1

a2ℓj

(
a2k−1
j + a2k−1

j+1

)
,

where a2k−1
n+1 = a2k−1

1 , k = 1, 2, . . . , ℓ. Substituting (4.13) to (4.12), we obtain
the desired formula. �

Let S be the class of oriented Z-homology 3-spheres modulo orientation
preserving homeomorphism. A Casson invariant [1] is a map λc : S −→ Z such
that

(1) λc(S
3) = 0,

(2) For any Z-homology 3-sphere Σ, a knot K ⊂ Σ, and an integer m =
0,±1,±2, . . .,

λc

(
M3(K;

1

m+ 1
;Σ)

)
− λc

(
M3(K;

1

m
; Σ)

)

is independent of m.
(3) For any boundary link K ∪K ′ in a Z-homology 3-sphere Σ, that is, K

and K ′ bound disjoint Seifert surfaces in Σ, and for any two integers
m and n,

λc

(
M3(K ∪K ′;

1

m+ 1
,

1

n+ 1
;Σ)

)
− λc

(
M3((K ∪K ′;

1

m
,

1

n+ 1
;Σ)

)

− λc

(
M3((K ∪K ′;

1

m+ 1
,
1

n
; Σ)

)
+ λc

(
M3(K ∪K ′;

1

m
,
1

n
; Σ)

)
= 0.

Note that for any integral homology sphere Σ, it is well known [1, 13, 14]
that

(4.14) λc(Σ) = µ(Σ) (mod 2).

In fact, λc is unique up to sign ±1. Normalizing λc by setting λc(trefoil) = +1,
Seo and the author gave the following Theorems 4.2 and 4.3 in [7]:
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Theorem 4.2. Let D = (aij)1≤i≤2r,1≤j≤n be an even net diagram (r ≥ 1, n ≥

2) of a knot K in S3. Then

(4.15) λc(M
3(K;

1

q
)) =

q

4

n∑

j=1

r∑

ℓ=1

ℓ∑

k=1

a2ℓj

(
a2k−1
j + a2k−1

j+1

)
,

where a2k−1
n+1 = a2k−1

1 for each k = 1, 2, . . . , ℓ. �

Theorem 4.3. Let D = (aij)1≤i≤2r−1,1≤j≤n be an even net diagram (r, n ≥ 2)

of a link L = K1 ∪K2 ∪ · · · ∪Kn in S3 such that for each j = 1, 2, . . . , n,

r∑

k=1

a2k−1
j = 0.

Then for any nonzero integers q1, q2, . . . , qn,

(4.16)

λc

(
M3

(
L;

1

q1
,
1

q2
, . . . ,

1

qn

))

= −
1

8

n∑

k=1

r−1∑

ℓ=1

ℓ∑

i=1

r∑

j=ℓ+1

qka
2ℓ
k

(
qk−1a

2i−1
k a2j−1

k + qk+1a
2i−1
k+1 a

2j−1
k+1

)
,

where q0 = qn, qn+1 = q1 and a2k−1
n+1 = a2k−1

1 for all k = 1, 2, . . . , r. �

We remark that (4.14) and (4.15) imply the formula in (4.11). Furthermore,
we obtain the following immediate corollary from (4.16).

Corollary 4.4. Under the same assumption as in Theorem 4.3, if follows that

for any nonzero integers q1, q2, . . . , qn,

µ(M3(L;
1

q1
,
1

q2
, . . . ,

1

qn
))

= −
1

8

n∑

k=1

r−1∑

ℓ=1

ℓ∑

i=1

r∑

j=ℓ+1

qka
2ℓ
k

(
qk−1a

2i−1
k a2j−1

k + qk+1a
2i−1
k+1 a

2j−1
k+1

)
(mod 2).

�

5. Examples

In this section, we give an infinite family of Z- and Z/2-homology 3-spheres
whose Casson invariants and the µ-invariants vanish. We also give an infinite
family of homology 3-spheres whose invariants do not vanish.
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Example 5.1. Let K be a knot in S3 which has an even net diagram D =
(aij)1≤i≤2r,1≤j≤2n(r, n ≥ 1) given by

D =




a1 −a1 a1 −a1 · · · a1 −a1
∗ ∗ ∗ ∗ · · · ∗ ∗
a2 −a2 a2 −a2 · · · a2 −a2
∗ ∗ ∗ ∗ · · · ∗ ∗
...

...
...

...
. . .

...
...

ar −ar ar −ar · · · ar −ar
∗ ∗ ∗ ∗ · · · ∗ ∗




,

where ai ∈ 2Z(1 ≤ i ≤ r) and each ∗ denotes an arbitrary even (possibly
distinct) integer. By Theorem 4.1, µ(M3(K; p

q
)) = −µ(L(p, q)) for any odd

integer p. By Theorem 4.2, λc(M
3(K; 1

q
)) = 0. In particular, if the sum of all

entries labeled ∗ are equal to ±1, then it follows from Theorem 3.6(1) that

λc(M
3(K;∓1)) = sign(M4(K̂)) = 0.

Example 5.2. Let K be a knot in S3 which has an even net diagram D =
(aij)1≤i≤2r,1≤j≤n(r ≥ 1, n ≥ 2) given by

D =




2m1 2m1 · · · 2m1

2m2 2m2 · · · 2m2

...
...

. . .
...

2m1 2m1 · · · 2m1

2m2 2m2 · · · 2m2




, m1,m2 ∈ Z.

By Theorem 4.1, we obtain that for any odd integer p,

µ(M3(K;
p

q
)) = −µ(L(p, q)) +

qnr(r + 1)m1m2

p
(mod 2).

By Theorem 4.2, λc(M
3(K; 1

q
)) = qnr(r + 1)m1m2. Let M4(L̂;±1) be the 4-

manifold with ∂M4(L̂;±1) = M3(L;±1). Then, by Theorem 3.6(1), we have

sign(M4(L̂;±1)) = ±rn(m1 +m2)± 1.

Example 5.3. Let L be a link in S3 which has an even net diagram D =
(aij)1≤i≤2m−1,1≤j≤4n(m ≥ 2, n ≥ 1) given by

D =




a1 a1 a1 a1 · · · a1
∗ ∗ ∗ ∗ · · · ∗
a2 a2 a2 a2 · · · a2
∗ ∗ ∗ ∗ · · · ∗
...

...
...

...
. . .

...
ar−1 ar−1 ar−1 ar−1 · · · ar−1

∗ ∗ ∗ ∗ · · · ∗
ar ar ar ar · · · ar




,
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where ai ∈ 2Z(1 ≤ i ≤ r) such that
∑r

i=1 ai = 0, and each ∗ denotes an
arbitrary even (possibly distinct) integer. Let qi(1 ≤ i ≤ 4n) be 4n integers
with q1 = q4i+1 = −q4i+3 and q2 = q4i+2 = −q4(i+1) for all i = 0, 1, 2, . . . , n−1.

By Theorem 4.3, λc(M
3(L; 1

q1
, . . . , 1

q4n
)) = 0, and so µ(M3(L; 1

q1
, . . . , 1

q4n
)) = 0.
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