• 제목/요약/키워드: Integral operators

검색결과 220건 처리시간 0.026초

SANDWICH-TYPE THEOREMS FOR A CLASS OF INTEGRAL OPERATORS ASSOCIATED WITH MEROMORPHIC FUNCTIONS

  • Cho, Nak-Eun
    • East Asian mathematical journal
    • /
    • 제28권3호
    • /
    • pp.321-332
    • /
    • 2012
  • The purpose of the present paper is to investigate some subordination and superordination preserving properties of certain integral operators de ned on the space of meromorphic functions in the puncture open unit disk. The sandwich-type theorems for these integral operators are also presented.

WEIGHTED INTEGRAL INEQUALITIES FOR MODIFIED INTEGRAL HARDY OPERATORS

  • Chutia, Duranta;Haloi, Rajib
    • 대한수학회보
    • /
    • 제59권3호
    • /
    • pp.757-780
    • /
    • 2022
  • In this article, we study the weak and extra-weak type integral inequalities for the modified integral Hardy operators. We provide suitable conditions on the weights ω, ρ, φ and ψ to hold the following weak type modular inequality $${\mathcal{U}}^{-1}\({\int_{{\mid}{\mathcal{I}}f{\mid}>{\gamma}}}\;{\mathcal{U}}({\gamma}{\omega}){\rho}\){\leq}{\mathcal{V}}^{-1}\({\int}_{0}^{\infty}{\mathcal{V}}(C{\mid}f{\mid}{\phi}){\psi}\),$$ where ${\mathcal{I}}$ is the modified integral Hardy operators. We also obtain a necesary and sufficient condition for the following extra-weak type integral inequality $${\omega}\(\{{\left|{\mathcal{I}}f\right|}>{\gamma}\}\){\leq}{\mathcal{U}}{\circ}{\mathcal{V}}^{-1}\({\int}_{0}^{\infty}{\mathcal{V}}\(\frac{C{\mid}f{\mid}{\phi}}{{\gamma}}\){\psi}\).$$ Further, we discuss the above two inequalities for the conjugate of the modified integral Hardy operators. It will extend the existing results for the Hardy operator and its integral version.

BOUNDS OF AN INTEGRAL OPERATOR FOR CONVEX FUNCTIONS AND RESULTS IN FRACTIONAL CALCULUS

  • Mishira, Lakshmi Narayan;Farid, Ghulam;Bangash, Babar Khan
    • 호남수학학술지
    • /
    • 제42권2호
    • /
    • pp.359-376
    • /
    • 2020
  • The present research investigates the bounds of an integral operator for convex functions and a differentiable function f such that |f'| is convex. Further, these bounds of integral operators specifically produce estimations of various classical fractional and recently defined conformable integral operators. These results also contain bounds of Hadamard type for symmetric convex functions.

ON OPIAL-TYPE INEQUALITIES VIA A NEW GENERALIZED INTEGRAL OPERATOR

  • Farid, Ghulam;Mehboob, Yasir
    • Korean Journal of Mathematics
    • /
    • 제29권2호
    • /
    • pp.227-237
    • /
    • 2021
  • Opial inequality and its consequences are useful in establishing existence and uniqueness of solutions of initial and boundary value problems for differential and difference equations. In this paper we analyze Opial-type inequalities for convex functions. We have studied different versions of these inequalities for a generalized integral operator. Further difference of Opial-type inequalities are utilized to obtain generalized mean value theorems, which further produce various interesting derivations for fractional and conformable integral operators.

Properties of integral operators in complex variable boundary integral equation in plane elasticity

  • Chen, Y.Z.;Wang, Z.X.
    • Structural Engineering and Mechanics
    • /
    • 제45권4호
    • /
    • pp.495-519
    • /
    • 2013
  • This paper investigates properties of integral operators in complex variable boundary integral equation in plane elasticity, which is derived from the Somigliana identity in the complex variable form. The generalized Sokhotski-Plemelj's formulae are used to obtain the BIE in complex variable. The properties of some integral operators in the interior problem are studied in detail. The Neumann and Dirichlet problems are analyzed. The prior condition for solution is studied. The solvability of the formulated problems is addressed. Similar analysis is carried out for the exterior problem. It is found that the properties of some integral operators in the exterior boundary value problem (BVP) are quite different from their counterparts in the interior BVP.

THE (k, s)-FRACTIONAL CALCULUS OF CLASS OF A FUNCTION

  • Rahman, G.;Ghaffar, A.;Nisar, K.S.;Azeema, Azeema
    • 호남수학학술지
    • /
    • 제40권1호
    • /
    • pp.125-138
    • /
    • 2018
  • In this present paper, we deal with the generalized (k, s)-fractional integral and differential operators recently defined by Nisar et al. and obtain some generalized (k, s)-fractional integral and differential formulas involving the class of a function as its kernels. Also, we investigate a certain number of their consequences containing the said function in their kernels.

INTEGRAL KERNEL OPERATORS ON REGULAR GENERALIZED WHITE NOISE FUNCTIONS

  • Ji, Un-Cig
    • 대한수학회보
    • /
    • 제37권3호
    • /
    • pp.601-618
    • /
    • 2000
  • Let (and $g^*$) be the space of regular test (and generalized, resp.) white noise functions. The integral kernel operators acting on and transformation groups of operators on are studied, and then every integral kernel operator acting on can be extended to continuous linear operator on $g^*$. The existence and uniqueness of solutions of Cauchy problems associated with certain integral kernel operators with intial data in $g^*$ are investigated.

  • PDF

ON C-STIELTJES INTEGRAL OF BANACH-VALVED FUNCTIONS

  • Zhang, Xiaojie;Zhao, Dafang;Ye, Guoju
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제14권2호
    • /
    • pp.71-84
    • /
    • 2007
  • In this paper, we define the C-Stieltjes integral of the functions mapping an interval [a,b] into a Banach space X with respect to g on [a,b], and the C-Stieltjes representable operators for the vector-valued functions which are the generalizations of the Henstock-Stieltjes representable operators. Some properties of the C-Stieltjes operators and the convergence theorems of the C-Stieltjes integral are given.

  • PDF

Invariance of the space of theta-series under theta operators

  • Kim, Myung-Hwan
    • 대한수학회보
    • /
    • 제29권2호
    • /
    • pp.245-256
    • /
    • 1992
  • In this article, we study the behavior of half integral weight thetaseries under theta operators. Theta operators are very important in the study of theta-series in connection with Hecke operators. Andrianov[A1] proved that the space of integral weight theta-series is invariant under the action of theta operators. We prove that his statement can be extened for half integral weight theta-series with a slight modification. By using this result one can prove that the space of theta-series is invariant under the action of Hecke operators as Andrianov did for intrgral weight theta-series [A1].

  • PDF