Browse > Article
http://dx.doi.org/10.11568/kjm.2021.29.2.227

ON OPIAL-TYPE INEQUALITIES VIA A NEW GENERALIZED INTEGRAL OPERATOR  

Farid, Ghulam (Department of Mathematics, COMSATS University Islamabad)
Mehboob, Yasir (Department of Mathematics, COMSATS University Islamabad)
Publication Information
Korean Journal of Mathematics / v.29, no.2, 2021 , pp. 227-237 More about this Journal
Abstract
Opial inequality and its consequences are useful in establishing existence and uniqueness of solutions of initial and boundary value problems for differential and difference equations. In this paper we analyze Opial-type inequalities for convex functions. We have studied different versions of these inequalities for a generalized integral operator. Further difference of Opial-type inequalities are utilized to obtain generalized mean value theorems, which further produce various interesting derivations for fractional and conformable integral operators.
Keywords
Convex function; Opial inequality; Integral operators; Fractional integral operators; Conformable integral operators;
Citations & Related Records
연도 인용수 순위
  • Reference
1 G. Farid, A. U. Rehman, S. Ullah, A. Nosheen, M. Waseem, Y. Mehboob, Opial-type inequalities for convex functions and associated results in fractional calculus, Adv. Difference Equ., 2019 (2019), 2019:152.   DOI
2 Y. C. Kwun, G. Farid, W. Nazeer, S. Ullah, S. M. Kang, Generalized Riemann-Liouville k-Fractional Integrals Associated With Ostrowski Type Inequalities and Error Bounds of Hadamard Inequalities, IEEE Access, 6 (2018), 64946-64953.   DOI
3 D. S. Mitrinovic, J. E. Pecaric, Generalization of two inequalities of Godunova and Levin, Bull. Polish Acad. Sci. Math., 36 (1988), 645-648.
4 B. G. Pachpatte, On Opial-type integral inequalities, J. Math. Anal. Appl., 120 (1986), 547-556.   DOI
5 M. Andric, A. Barbir, G. Farid, J. Pecaric, More on certain Opial-type inequality for fractional derivatives and exponentially convex functions, Nonlinear Funct. Anal. Appl., 19 (4) (2014), 563-583.
6 M. Z. Sarikaya, M. Dahmani, M. E. Kiris, F. Ahmad, (k, s)-Riemann-Liouville fractional integral and applications, Hacet. J. Math. Stat., 45 (1) (2016), 77-89. doi:10.15672/HJMS.20164512484.   DOI
7 G. Farid, Existence of an integral operator and its consequences in fractional and conformable integrals, Open J. Math. Sci. 3 (2019), 210-216.   DOI
8 G. Farid, J. Pecaric, Opial type integral inequalities for fractional derivatives, Fractional Differ. Calc., 2 (1) (2012), 31-54.
9 D. W. Boyd, Best constants in a class of integral inequalities, Pacific J. Math. 30 (1969), 367-383.   DOI
10 D. W. Boyd, J. S. W. Wong, An extension of Opial's inequality, J. Math. Anal. Appl., 19 (1967), 100-102.   DOI
11 G. Farid, J. Pecaric, Opial type integral inequalities for fractional derivatives II, Fractional Differ. Calc., 2 (2) (2012), 139-155.
12 F. Jarad, E. Ugurlu, T. Abdeljawad, D. Baleanu, On a new class of fractional operators, Adv. Difference Equ., 2017 (2017), 247pp.   DOI
13 A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and application of fractional differential equations, North-Holland Mathematics studies, 204, Elsevier, New York-London, 2006.
14 S. Mubeen, G. M. Habibullah, k-fractional integrals and applications, Int. J. Contemp. Math. Sci., 7 (2012), 89-94.
15 J. Pecaric , F. Proschan, Y. C. Tong, Convex Functions, Partial Orderings and Statistical Applications, Academic Press, Inc., (1992).
16 Z. Opial, Sur une inegalite, Ann. Polon. Math., 8 (1960), 29-32.   DOI
17 B. G. Pachpatte, A note on generalization Opial type inequalities, Tamkang J. Math., 24 (1993), 229-235.   DOI
18 A. Ur. Rehman, G. Farid, J. Pecaric Mean value theorem associated to the differences of recent Opial-type inequalities and their fractional versions, Fractional Differ. Calc., 10 (2) (2020), 213-224.
19 T. U. Khan, M. A. Khan, Generalized conformable fractional operators, J. Comput. Appl. Math., 346 (2019), 378-389.   DOI
20 S. Habib, S. Mubeen, M. N. Naeem, Chebyshev type integral inequalities for generalized k-fractional conformable integrals, J. Inequal. Spec. Funct., 9 (4) (2018), 53-65.
21 G. A. Anastassiou, General fractional Opial type inequalities, Acta Appl. Math., 54 (1998), 303-317   DOI
22 M. Andric, J. Pecaric, I. Peric, Improvement of composition rule for the Canavati fractional derivatives and applications to Opial-type inequalities, Dynam. Systems. Appl., 20 (2011), 383-394.
23 M. Andric, J. Pecaric, I. Peric, Composition identities for the Caputo fractional derivatives and application to Opial type inequalities, Math. Inequal. Appl., 16 (3)(2013), 657-670.
24 M. Andric, A. Barbir, G. Farid and J. Pecaric, Opial-type inequality due to Agarwal-Pang and fractional differential inequalities, Integral Transforms Spec. Funct., 25 (4) (2013), 324-335.   DOI
25 H. Chen, U. N. Katugampola, Hermite-Hadamard and Hermite-Hadamard-Fejer type inequalities for generalized fractional integrals, J. Math. Anal. Appl., 446 (2017), 1274-1291.   DOI
26 G. A. Anastassiou, Opial type inequalities involving fractional derivatives of functions, Nonlinear Stud., 6 (2)(1999), 207-230.