ON C-STIELTJES INTEGRAL OF BANACH-VALUED FUNCTIONS

XIAOJIE ZHANG*, DAFANG ZHAO**AND GUOJU YE***

ABSTRACT. In this paper, we define the C-Stieltjes integral of the functions mapping an interval [a,b] into a Banach space X with respect to g on [a,b], and the C-Stieltjes representable operators for the vector-valued functions which are the generalizations of the Henstock-Stieltjes representable operators. Some properties of the C-Stieltjes operators and the convergence theorems of the C-Stieltjes integral are given.

1. Introduction

In 1996 [6] B. Bongiorno introduced a constructive minimal integration process of Riemann type, called C-integral, which includes the Lebesgue integral and also integrates the derivatives of differentiable function. B. Bongiorno and L. Di Piazza [6,7] discussed some properties of the C-integral of real-valued functions. In [3] ap-Henstock-Stieltjes integral in Banach space has been given, and the dominated convergence theorem also has been proved. J. Han Yoon, J. Sul Lim and G. Sik Eun defined the Henstock-Stieltjes integral and its representable and nearly representable operators for vector-valued function in [2].

In this paper, we define the C-Stieltjes integral and the C-Stieltjes representable operators for Banach-valued functions. The basic properties of C-Stieltjies integral will be discussed. Finally, we prove two convergence theorems of the C-Stieltjes integral.

2. Definitions and Basic Properties

Throughout this paper [a, b] is a compact interval in R. X will denote a real Banach space with norm $\|\cdot\|$ and its dual X^* . A partition D is a finite collection of interval-point pairs $\{([u_i, v_i], \xi_i)\}_{i=1}^n$, where $\{[u_i, v_i]\}_{i=1}^n$ are non-overlapping

Received by the editors December 14, 2006 and, in revised form April 20, 2007. 2000 Mathematics Subject Classification. 26A39, 28B05, 46G10.

Key words and phrases. C-integral, C-Stieltjes integral, representable operators.

subintervals of [a,b]. $f:[a,b] \to X$, $\delta(\xi)$ is a positive function on [a,b], i.e., $\delta(\xi):[a,b]\to\mathbb{R}^+$. We say that $D=\{[u_i,v_i]\}_{i=1}^n$ is

- (1) a partial partition of [a,b] if $\bigcup_{i=1}^{n} [u_i,v_i] \subset [a,b]$;
- (2) a partition of [a, b] if $\bigcup_{i=1}^{n} [u_i, v_i] = [a, b]$;
- (3) a δ -fine McShane partition of [a,b] if $[u_i,v_i]\subset B(\xi_i,\delta(\xi))=(\xi_i-\delta(\xi),\xi_i+\delta(\xi))$ and $\xi_i\in [a,b]$ for all i=1,2,...,n;
- (4) a δ -fine C-partition of [a,b] if for the given $\varepsilon > 0$, it is a δ -fine McShane partition of [a,b] and satisfying the condition

$$\sum_{i=1}^n dist(\xi_i, [u_i, v_i]) < \frac{1}{\varepsilon},$$

here $dist(\xi_i, [u_i, v_i]) = \inf\{|t_i - \xi_i| : t_i \in [u_i, v_i]\}.$

Given an δ -fine C-partition $D = \{([u_i, v_i], \xi_i)\}_{i=1}^n$ we write

$$S(f,D) = \sum_{i=1}^{n} f(\xi_i)(v_i - u_i)$$

for the integral sums over D, whenever $f:[a,b] \to X$.

Definition 1. A function $f:[a,b]\to X$ is *C-integrable* if there exists a vector $A\in X$ such that for every $\varepsilon>0$ there is a positive function $\delta(\xi):[a,b]\to R^+$ such that

$$||S(f,D)-A|| \stackrel{.}{<} \varepsilon$$

for each δ -fine C-partition $D = \{[u_i, v_i], \xi_i\}_{i=1}^n$ of [a, b]. A is called the C-integral of f on [a, b] and we write $A = \int_a^b f$ or $A = (C) \int_a^b f$.

The function f is C-integrable on the set $E \subset [a,b]$ if the function $f\chi_E$ is C-integrable on [a,b]. We write $\int_E f = \int_a^b f\chi_E$.

Definition 2. Let $g:[a,b] \to R$ be an increasing function. A function $f:[a,b] \to X$ is *C-Stieltjes integrable* with respect to g on [a,b] if there exists a vector $A \in X$ such that for every $\varepsilon > 0$ there is a positive function $\delta(\xi):[a,b] \to R^+$ such that

$$||S(f,g,D)-A||<\varepsilon$$

for each δ -fine C-partition $D = \{([u_i, v_i], \xi_i)\}_{i=1}^n$ of [a, b], whenever

$$S(f, g, D) = \sum_{i=1}^{n} f(\xi_i)[g(v_i) - g(u_i)]$$

for the integral sums over D. A is called the C-Stieltjes integral of f with respect to g on [a,b], and we write $A = \int_a^b f dg$.

We can easily get the following basic properties of C-Stieltjes integral.

Theorem 3. Let $g:[a,b] \to R$ be an increasing function.

(1) If f is C-Stieltjes integrable with respect to g on [a,b], then f is C-Stieltjes integrable with respect to g on every subinterval $[c,d] \subseteq [a,b]$. In addition, if $c \in (a,b)$, then

$$\int_{a}^{c} f dg + \int_{c}^{b} f dg = \int_{a}^{b} f dg.$$

(2) If f_1 and f_2 are C-Stieltjes integrable with respect to g on [a,b] and α , β are real numbers, then $\alpha f_1 + \beta f_2$ is C-Stieltjes integrable with respect to g on [a,b] and

$$\int_a^b (\alpha f_1 + \beta f_2) dg = \alpha \int_a^b f_1 dg + \beta \int_a^b f_2 dg.$$

(3) Let g_1 , g_2 be increasing real functions on [a,b] and α , β be real numbers. If f is C-Stieltjes integrable with respect to both g_1 and g_2 on [a,b], then the function f is C-Stieltjes integrable with respect to $\alpha g_1 + \beta g_2$ on [a,b] and

$$\int_a^b f d(\alpha g_1 + \beta g_2) = \alpha \int_a^b f dg_1 + \beta \int_a^b f dg_2.$$

Corollary 1. Let $g:[a,b] \to R$ be an bounded variation function and f be continuous. Then f is C-Stieltjes integrable with respect to g on [a,b].

Proof. Since $g:[a,b] \to R$ is an bounded variation function, we may assume that g is nondecreasing on [a,b] and by the definition of the C-Stieltjes integral and continuity of f, f is C-Stieltjes integrable with respect to g on [a,b].

Lemma 1 (Saks-Henstock). Let $f:[a,b] \to X$ be C-Stieltjes integrable with respect to g on [a,b]. Then for every $\varepsilon > 0$ there is a positive function $\delta(\xi):[a,b] \to R^+$ such that

$$\left\|S(f,g,D)-\int_a^bfdg
ight\|$$

for each δ -fine C-partition $D = \{(I, \xi)\}\ of [a, b]$.

Particularly, if $D' = \{([u_i, v_i], \xi_i)\}_{i=1}^m$ is an arbitrary δ -fine partial C-partition of [a, b], we have

$$\left\|S(f,g,D^{'})-\sum_{i=1}^{m}\int_{u_{i}}^{v_{i}}f(\xi_{i})dg
ight\|\leqarepsilon.$$

Proof. The proof is similar to the proof of Henstock-Stieltjes integral, see Lemma 2.5 in [3]. \Box

Theorem 4. Let $g:[a,b] \to R$ be an increasing function and $g \in C^1([a,b])$. If $f = \theta$ almost everywhere on [a,b], then f is C-Stieltjes integrable with respect to g on [a,b] and $\int_a^b f dg = \theta$.

Proof. Since $g \in C^1([a,b])$, there exists a number M > 0 such that $|g'(\xi)| \leq M$ for each $\xi \in [a,b]$. From the mean-valued theorem we know that there exists $\xi_i' \in [u_i,v_i]$ such that

$$g(v_i) - g(u_i) = g'(\xi_i')(v_i - u_i).$$

Assume $E = \{\xi \in [a,b] : f(\xi) \neq \theta\}$ and $E = \bigcup_n E_n \subset [a,b]$, where $E_n = \{\xi \in [a,b] : n-1 \leq \|f(\xi)\| < n\}$. Obviously, $\mu(E) = 0$ and therefore $\mu(E_n) = 0$. Then there are an open sets $G_n \subset [a,b]$ such that $E_n \subset G_n$ and $\mu(G_n) < \frac{\varepsilon}{n \cdot 2^n \cdot M}$. We choose a positive function $\delta(\xi) : I_0 \to R^+$ as follows: for each $\xi \in E_n$, $B(\xi, \delta(\xi)) \subset G_n$ and $\delta(\xi)$ is arbitrary for $\xi \in [a,b] \setminus E$. For each δ -fine C-partition $D = \{([u,v],\xi)\}$ of [a,b], we have

$$||S(f,g,D) - \theta|| = \left| \left| \sum_{n=1}^{\infty} \sum_{\xi_i \in E_n} f(\xi_i) [g(v_i) - g(u_i)] \right| \right|$$

$$= \left| \left| \sum_{n=1}^{\infty} \sum_{\xi_i \in E_n} f(\xi_i) g'(\xi_i') (v_i - u_i) \right| \right|$$

$$< \sum_{n=1}^{\infty} n \cdot M \cdot \frac{\varepsilon}{n \cdot 2^n \cdot M} = \varepsilon.$$

Hence, f is C-Stieltjes integrable with respect to g on [a, b] and

$$\int_{a}^{b} f dg = \theta.$$

Corollary 2. Let $f_1:[a,b] \to X$ be C-Stieltjes integrable with respect to g on [a,b]. If $f_1=f_2$ almost everywhere on [a,b], then f_2 is C-Stieltjes integrable with respect to g on [a,b] and $\int_a^b f_1 dg = \int_a^b f_2 dg$.

3. The C-Stieltjes Representable Operators

Definition 5. A continuous linear operator $T: L_1[a,b] \to X$ is *C-Stieltjes representable* with respect to g if there exists a scalar essentially bounded C-Stieltjes integrable function $h: [a,b] \to X$ with respect to g such that $T(f) = \int_a^b fhdg$, for every $f \in L_1[a,b]$.

Theorem 6. Assume that X, Y are real Banach spaces, $g:[a,b] \to R$ is an increasing function and $f:[a,b] \to X$ is C-Stieltjes integrable with respect to g. If $T:X \to Y$ is a continuous linear operator, then T(f) is C-Stieltjes integrable with respect to g such that

$$Tigg(\int_a^b f dgigg) = \int_a^b T(f) dg \ \ ext{for all} \ f \in L_1[a,b].$$

Proof. Since $T: X \to Y$ is a continuous linear operator, there exists a number M>0 such that $||Tx|| \leq M||x||$ for each $x \in X$. Since $f:[a,b] \to X$ is C-Stieltjes integrable with respect to g on [a,b], for each $\varepsilon>0$ there is a $\delta>0$ such that

$$\left\| S(f,g,D) - \int_{a}^{b} f dg \right\| < \frac{\varepsilon}{M}$$

for each δ -fine C-partition $D = \{([u_i, v_i], \xi_i)\}_{i=1}^n$ of [a, b], where

$$S(f, g, D) = \sum_{i=1}^{n} f(\xi_i) |g(v_i) - g(u_i)|.$$

Hence we have

$$\begin{split} \left\| S(Tf,g,D) - T\bigg(\int_a^b f dg \bigg) \right\| &= \left\| T\bigg(S(f,g,D) - \int_a^b f dg \bigg) \right\| \\ &\leq M \cdot \left\| S(f,D) - \int_a^b f \right\| \\ &< M \cdot \frac{\varepsilon}{M} = \varepsilon. \end{split}$$

So,

$$T\bigg(\int_a^b f dg\bigg) = \int_a^b T(f) dg.$$

Theorem 7. If $T: L_1[a,b] \to X$ is C-Stieltjes representable with respect to g and $S: X \to Y$ is any continuous linear operator. Then $S(T): L_1[a,b] \to Y$ is C-Stieltjes representable with respect to g.

Proof. The proof is similar to Theorem 2.4 in [5].

Theorem 8. Assume that $T, G : L_1[a,b] \to X$ are C-Stieltjes representable with respect to g. Then k_1T+k_2G is C-Stieltjes representable with respect to g for arbitrary $k_1, k_2 \in R$.

Proof. We will prove that kT and T+G are C-Stieltjes representable with respect to g.

(1) Suppose that a bounded linear operator $T: L_1[a,b] \to X$ is C-Stieltjes representable with respect to g, there exists a scalarly essentially bounded C-Stieltjes integrable function $h: [a,b] \to X$ with respect to g such that

$$T(f) = \int_{a}^{b} fhdg.$$

Since $T: L_1[a,b] \to X$ is bounded linear operator, $kT: L_1[a,b] \to X$ is a bounded linear operator for arbitrary k in R and T is a C-Stieltjes representable with respect to g. Hence,

$$(kT)(f) = \int_a^b k(fh)dg = \int_a^b f(kh)dg.$$

Thus, $kT: L_1[a,b] \to X$ is C-Stieltjes representable with respect to g.

(2) Since the bounded linear operators T and G are C-Stieltjes representable with respect to g, there exist scalar essentially bounded C-Stieltjes integrable function $h_1: L_1[a,b] \to X$ and $h_2: L_1[a,b] \to X$ with respect to g such that

$$T(f)=\int_a^bfh_1dg, \quad G(f)=\int_a^bfh_2dg$$

for all $f \in L_1[a, b]$. Since T, G are bounded linear operators, T + G is also a bounded linear operator and $h_1 + h_2$ is scalar essentially bounded C-Stieltjes representable with respect to g. Hence

$$(T+G)(f) = T(f) + G(f) = \int_a^b f h_1 dg + \int_a^b f h_2 dg = \int_a^b f(h_1 + h_2) dg.$$

This means that T+G is C-Stieltjes representable with respect to g. Therefore, $k_1T+k_2G:L_1[a,b]\to X$ is C-Stieltjes representable with respect to g.

Theorem 9. Let $f:[a,b] \to X$ be C-integrable on [a,b] and $F(x) = \int_a^x f$ for each $x \in [a,b]$. If $G:[a,b] \to R$ is of bounded variation on [a,b], then fG is C-integrable on [a,b] and

$$\int_{a}^{b} fG = F(b)G(b) - \int_{a}^{b} FdG.$$

Proof. Let $\varepsilon > 0$. Since f is C-integrable on [a, b], there exists a positive function δ_1 defined on [a, b] such that

$$\left\|S(f,D_1)-\int_a^b f\right\|<\varepsilon$$

whenever $D_1 = \{(u_i, v_i), \xi_i\}_{i=1}^n$ is a δ_1 -fine C-partition of [a, b]. F is the primitive of f, then F is continuous and therefore uniformly continuous on [a, b]. We claim that F is C-Stieltjes integrable on [a, b] with respect to G, the proof is similar to [13, Theorem 3.3.2]. Then there exists a positive function $\delta < \delta_1$ such that

$$\left\| \sum_{k=1}^n F(c_i)(G(x_i) - G(x_{i-1})) - \int_a^b FG' \right\| < \varepsilon.$$

By the Saks-Henstock Lemma, we have

$$\left\| \sum_{k=1}^n f(c_i)(x_i - x_{i-1}) - F(x_i) \right\| < \varepsilon$$

whenever $D = \{([x_{i-1}, x_i], c_i)\}_{i=1}^n$ is a δ -fine C-partition of [a, b]. Let

$$D = \{([x_{k-1}, x_k], c_k)\}_{k=1}^n$$

be a δ -fine C-partition of [a,b] and assume that each tag c_k occurs only once. Note that $c_1=a$ and that $c_n=b$. By the Saks-Henstock Lemma and Abel transform formula, we obtain

$$\left\| \sum_{k=1}^{n} f(c_{k})G(c_{k})(x_{k} - x_{k-1}) - \left(F(b)G(b) - \int_{a}^{b} FG' \right) \right\|$$

$$= \left\| \sum_{k=1}^{n-1} \left(\sum_{i=1}^{k} f(c_{i})(x_{i} - x_{i-1})(G(c_{k}) - G(c_{k+1})) \right) + \sum_{i=1}^{n} f(c_{i})(x_{i} - x_{i-1})G(c_{n}) - (F(b)G(b) - \int_{a}^{b} FG') \right\|$$

$$\leq \sum_{k=1}^{n-1} |G(c_{k}) - G(c_{k+1})| \left\| \sum_{i=1}^{k} (f(c_{i})(x_{i} - x_{i-1}) - F(x_{k})) \right\|$$

$$+ \left\| \sum_{k=1}^{n-1} F(x_{k})(G(c_{k+1}) - G(c_{k})) - \int_{a}^{b} FG' \right\|$$

$$+ |G(b)| \left\| \sum_{i=1}^{n} (f(c_{i})(x_{i} - x_{i-1}) - F(b)) \right\|$$

$$< \varepsilon V(G, [a, b]) + \varepsilon + \varepsilon |G(b)|$$

$$=\varepsilon(V(G,[a,b])+1+|G(b)|).$$

This completes the proof.

Remark 1. In fact, B. Bongiorno discussed theorem 3.5 in [12, Theorem 4.2] for the case of real valued functions. Here, we extend this result to Banach-valued functions.

We can easily get the following corollary.

Corollary 3. Let $f:[a,b] \to X$ be C-integrable on [a,b] and $F(x) = \int_a^x f$ for each $x \in [a,b]$. If $G:[a,b] \to R$ is absolutely continuous on [a,b], then fG is C-integrable on [a,b] and

$$\int_{a}^{b} fG = F(b)G(b) - \int_{a}^{b} FdG.$$

4. Convergence Theorems

Definition 10. Let $g:[a,b]\to R$ be an increasing function. A sequence $\{f_k\}$ is *C-Stieltjes equi-integrable* with respect to g on [a,b] if each f_k is C-Stieltjes integrable with respect to g and for each $\varepsilon > 0$ there is a positive function $\delta(\xi):[a,b]\to R^+$ such that

$$\left\| S(f_k, g, D) - \int_a^b f_k dg \right\| < \varepsilon \quad \forall k \in N$$

for each δ -fine C-partition $D = \{([u_i, v_i], \xi_i)\}_{i=1}^n$ of [a, b].

Theorem 11. Assume that $g:[a,b] \to R$ be an increasing function and $f_k:[a,b] \to X$ be C-Stieltjes equi-integrable with respect to g on [a,b] such that

$$\lim_{k\to\infty} f_k(\xi) = f(\xi) \quad \forall \xi \in [a,b].$$

Then the function $f:[a,b] \to X$ is C-integrable with respect to g on [a,b] and

$$\lim_{k\to\infty}\int_a^b f_k dg = \int_a^b f dg.$$

Proof. We will prove that $\int_a^b f_k dg$ has the limit A and $\int_a^b f dg = A$.

(1) Let $\varepsilon > 0$. Since $\{f_k\}$ is C-Stieltjes equi-integrable on [a, b], there exists a $\delta(\xi) > 0$ for any δ -fine C-partition $D = \{([u_i, v_i], \xi_i)\}_{i=1}^n$ of [a, b],

$$\left\|S(f_k,g,D)-\int_a^b f_k dg\right\|$$

for all k. Since $\{f_k\}$ converges point-wise on [a,b], there exists a positive integer $N \in \mathbb{N}$ such that

$$||S(f_k, g, D) - S(f_l, g, D)|| < \varepsilon$$

for all k, l > N. Then we have

$$\left\| \int_{a}^{b} f_{k} dg - \int_{a}^{b} f_{l} dg \right\| \leq \left\| S(f_{k}, g, D) - \int_{a}^{b} f_{k} dg \right\|$$

$$+ \left\| S(f_{k}, g, D) - S(f_{l}, g, D) \right\|$$

$$+ \left\| S(f_{l}, g, D) - \int_{a}^{b} f_{l} dg \right\| < 3\varepsilon$$

for all k, l > N

Hence, the sequence $\left\{ \int_a^b f_k dg \right\}$ of elements of X is a Cauchy sequence. Let A be the limit of this sequence. Then

$$\lim_{k \to \infty} \int_a^b f_k dg = A \in X.$$

(2) Since $\lim_{k\to\infty}\int_a^b f_k dg = A$, for each $\varepsilon > 0$ there is a $m \in \mathbb{N}$ such that

$$\left\| \int_{a}^{b} f_{k} dg - A \right\| < \varepsilon$$

for all k > m. We will prove that $\int_a^b f dg = A$.

Take any δ -fine C-partition $D = \{([u, v], \xi)\}$ of [a, b]. Since $\lim_{k \to \infty} f_k(\xi) = f(\xi)$, there is a k > m such that

$$||S(f_k, g, D) - S(f, g, D)|| < \varepsilon.$$

Thus, we have

$$\begin{split} \left\| S(f,g,D) - A \right\| &\leq \left\| S(f,g,D) - S(f_k,g,D) \right\| \\ &+ \left\| S(f_k,g,D) - \int_a^b f_k dg \right\| \\ &+ \left\| \int_a^b f_k dg - A \right\| < 3\varepsilon. \end{split}$$

This means that f is C-Stieltjes integrable with respect to g on [a, b] and

$$\lim_{k \to \infty} \int_{a}^{b} f_{k} dg = \int_{a}^{b} f dg.$$

Definition 12. Let $F:[a,b] \to X$ and let E be a subset of [a,b].

- (a) F is said to be AC_{δ} on E if for each $\varepsilon > 0$ there is a constant $\eta > 0$ and a positive function $\delta(\xi) : [a,b] \to R^+$ such that $\|\sum_i F([u_i,v_i])\| < \varepsilon$ for each δ fine partial partition $D = \{([u_i,v_i],\xi_i)\}$ of [a,b] satisfying the endpoints of $[u_i,v_i]$ belonging to E and $\sum_i |v_i u_i| < \eta$.
- (b) F is said to be AC_c on E if for each $\varepsilon > 0$ there is a constant $\eta > 0$ and a positive function $\delta(\xi) : [a,b] \to R^+$ such that $\sum_i ||F([u_i,v_i])|| < \varepsilon$ for each δ -fine partial C-partition $D = \{([u_i,v_i],\xi_i)\}$ of [a,b] satisfying the endpoints of $[u_i,v_i]$ belonging to E and $\sum_i |v_i u_i| < \eta$.
- (c) F is said to be ACG_{δ} if F is continuous on E and E can be expressed as a union of countable sets on which F is AC_{δ} .
- (d) F is said to be ACG_c on E if F is continuous on E and E can be expressed a union of countable sets on which F is AC_c .

Theorem 13. Assume that $g:[a,b] \to R$ is an increasing function and $g \in C^1[a,b]$. If functions $f_n:[a,b] \to X$ are C-Stieltjes integrable with respect to g such that

- 1) $f_n(x) \to f(x)$ for all $x \in [a, b]$;
- 2) there exists a real-valued function h that is C-Stieltjes integrable with respect to g on [a,b] and such that $||f_n f_m|| \le h$ for each n,m.

Then f is C-Stieltjes integrable with respect to g on [a,b] and

$$\lim_{n\to\infty}\int_a^b f_n dg = \int_a^b f dg.$$

Proof. We will prove this theorem by three steps.

(1) Assume $E_j = \{ \xi \in [a,b] : j-1 \le |h(\xi)| < j \}$ for each natural number j. Then $[a,b] = \bigcup_j E_j$. Let $\varepsilon > 0$ and $H(x) = \int_a^x h dg$. We claim that H(x) is ACG_c on [a,b]. By Saks-Henstock lemma, for the given $\varepsilon > 0$, there is a positive function δ such that

$$\sum |h(\xi_i)(g(v_i) - g(u_i)) - H(u_i, v_i)| < \frac{\varepsilon}{2}$$

for each δ -fine partial C-partition $D=\{([u_i,v_i],\xi_i)\}$ of [a,b], whenever $\xi_i\in E_j$, $H(u_i,v_i)=\int_{u_i}^{v_i}hdg$.

Let M be a bound of the function g' on [a, b]. By the Mean Value Theorem, for each i, there exists $x_i \in (u_i, v_i)$ such that

(1)
$$g(v_i) - g(u_i) = g'(x_i)(v_i - u_i) \le M(v_i - u_i).$$

Choose $\eta < \frac{\varepsilon}{2Mn(b-a)}$ and let $\sum_{i}(v_i - u_i) < \eta$, then we have

$$\left|\sum_{i} H(u_{i}, v_{i})\right| \leq \sum_{i} |h(\xi_{i})(g(v_{i}) - g(u_{i})) - H(u_{i}, v_{i})|$$

$$+ \sum_{i} |h(\xi_{i})|g'(x_{i})(v_{i} - u_{i})$$

$$< \frac{\varepsilon}{2} + Mn \sum_{i} (v_{i} - u_{i}) < \varepsilon$$

Hence, H(x) is AC_c on E_j and therefore H is ACG_c on [a, b].

(2) Since H(x) is AC_c on E_j for each j, there exists $\eta_j > 0$ such that

$$\sum_{i} |H(v_i, u_i)| < \varepsilon \cdot 2^{-j}$$

whenever $\{[u_i, v_i]\}$ is a finite collection of non-overlapping intervals in [a, b] satisfying $\sum_i |v_i - u_i| < \eta_j$ and $u_i, v_i \in E_j$. Since h(x) is C-Stieltjes integrable with respect to g on [a, b], there is a choice $\delta_h > 0$ such that

$$\left|\sum_i \left[h(\xi)(g(v_i) - g(u_i)) - \int_{u_i}^{v_i} h dg
ight]
ight| < arepsilon$$

for each δ_h - fine C-partition $D_h = \{([u_i, v_i], \xi)\}$ of [a, b].

Let $D_0 = \{([u_i, v_i], \xi)\}$ be a δ_h - fine partial C-partition of [a, b] and $u_i, v_i \in E_j$, $\sum_{\xi \in E_i} |v_i - u_i| < \eta_j$. Then for each n, m, we have

(3)
$$\left\| \sum_{i} \int_{u_{i}}^{v_{i}} f_{n} dg - \sum_{i} \int_{u_{i}}^{v_{i}} f_{m} dg \right\| \leq \sum_{i} \int_{u_{i}}^{v_{i}} \|f_{n} - f_{m}\| dg$$
$$\leq \sum_{i} \int_{u_{i}}^{v_{i}} h dg$$
$$= \sum_{j=1}^{\infty} \sum_{\xi \in E_{j}} \int_{u_{i}}^{v_{i}} h dg < \varepsilon.$$

Since $\{f_n\}$ is C-Stieltjes integrable with respect to g on [a, b], for the given $\varepsilon > 0$, there exists δ_n and $\delta_{n+1} < \delta_n$ such that

(4)
$$\left\| \sum_{i} f_n(g(v_i) - g(u_i)) - \sum_{i} \int_{u_i}^{v_i} f_n dg \right\| < \varepsilon \cdot 2^{-n}$$

for each δ_n -fine C-partition $D_n = \{([u,v],\xi)\}$ of [a,b]. For each $\xi \in E_j$, choose $m(\xi) \in \mathbb{N}$ for all $n,m > m(\xi)$ such that

$$||f_n(\xi) - f_m(\xi)|| < \varepsilon.$$

(3) In the following, we will prove $\{f_n\}$ is C-Stieltjes equi-integrable with respect to g on [a, b].

Let $\delta(\xi) = \min\{\delta_{m(\xi)}(\xi), \delta_h(\xi)\}, \xi \in E_j, j = 1, 2 \cdots$. Take any δ - fine C-partition $D = \{([u_i, v_i], \xi)\}$ of [a, b], splitting the sum \sum over D into two partial sums over D_1 and D_2 with $m(\xi) \geq n$ and $m(\xi) < n$ respectively. When $m(\xi) \geq n$, the sum over D_1 has finite terms, so,

$$\left\|\sum_{D_1}\left[f_n(g(v_i)-g(u_i))-\int_{u_i}^{v_i}f_ndg
ight]
ight\|$$

For the sum \sum over D we have

$$\left\| \sum_{D} \left[f_{n}(g(v_{i}) - g(u_{i})) - \int_{u_{i}}^{v_{i}} f_{n} dg \right] \right\|$$

$$\leq \left\| \sum_{D_{1}} \left[f_{n}(g(v_{i}) - g(u_{i})) - \int_{u_{i}}^{v_{i}} f_{n} dg \right] \right\|$$

$$+ \left\| \sum_{D_{2}} \left[f_{n}(g(v_{i}) - g(u_{i})) - \int_{u_{i}}^{v_{i}} f_{n} dg \right] \right\|$$

$$< \varepsilon + \left\| \sum_{D_{2}} (f_{n} - f_{m(\xi)})(g(v_{i}) - g(u_{i})) \right\|$$

$$+ \left\| \sum_{D_{2}} \left[f_{m(\xi)}(g(v_{i}) - g(u_{i})) - \int_{u_{i}}^{v_{i}} f_{m(\xi)} dg \right] \right\|$$

$$+ \left\| \sum_{D_{2}} \left[\int_{u_{i}}^{v_{i}} f_{m(\xi)} dg - \int_{u_{i}}^{v_{i}} f_{n} dg \right] \right\|.$$

From the formula (5), we obtain

$$\left\| \sum_{D_2} (f_n - f_{m(\xi)})(g(v_i) - g(u_i)) \right\| < \varepsilon(b - a).$$

By (4)

$$\left\| \sum_{D_2} \left[f_{m(\xi)}(g(v_i) - g(u_i)) - \int_{u_i}^{v_i} f_{m(\xi)} dg \right] \right\| < \varepsilon$$

and by (3),

$$\left\| \sum_{D_2} \left[\int_{u_i}^{v_i} f_{m(\xi)} dg - \int_{u_i}^{v_i} f_n dg \right] \right\| < \varepsilon.$$

Therefore, from (6) and the above inequalities we have that

$$\left\| \sum_{D} [f_n(g(v_i) - g(u_i)) - \int_{u_i}^{v_i} f_n dg] \right\|$$

$$< \varepsilon + \varepsilon(b - a) + \varepsilon + \varepsilon$$

$$= \varepsilon(b - a + 3).$$

Then for all $n \in N$, $\{f_n\}$ is C-Stieltjes equi-integrable. By Theorem 4.2, f is C-Stieltjes integrable with respect to g on [a, b] and

$$\lim_{n\to\infty} \int_a^b f_n dg = \int_a^b f dg.$$

Remark 2. The previous theorem holds for the Ap-Henstock-Stieltjes integral [3]. We prove that it also holds for the C-Stieltjes integral.

Acknowledgement. The authors are grateful to the referee for his or her careful reading of the manuscript and for valuable and helpful suggestions.

REFERENCES

- J. M. Park, Y. K. Kim & J. H. Yoon: Some properties of the ap-Denjoy Integral. Bull. Korean Math. Soc. 42 (2005), 535-541.
- 2. J. H. Yoon, J. M. Park, D. H. Lee & B. M. Kim: The nearly Henstock-Stiiltjes representable operators. J. Chungcheong Math. Soc. 12 (1999), 179-186.
- 3. D. Zhao & G. Ye: On Ap-Henstock-Stieltjes integral. J. Chungcheong Math. Soc. 19 (2006), 177-188.
- 4. C. K. Park: On Denjoy-McShane-Stieltjes integral. Commun. Korean Math. Soc. 18 (2003), 643-652.
- J. H. Yoon: The Nearly H₁-Stieltjes representable operators. J. Korea Soc. Math. Educ. Ser. B:Pure Appl. Math. 8 (2001), 53-59.
- B. Bongiorno: Un nvovo interale il problema dell primitive. Le Matematiche 51 (1996), 299-313.
- L. Di Piazza: A Riemann-type minimal integral for the classical problem of primitives. Rend. Istit. Mat. Univ. Trieste XXXIV (2002), 143-153.
- 8. S. Schwabik & Guoju Ye: Topics in Banach space integration. World Scientific, 2005.
- Lee Peng Yee: Lanzhou Lectures on Henstock integration, World Scientific, Singapore, 1989.
- 10. R. A. Gordon: The Denjoy extension of the Bochner, Pettis and Dunford integrals. Studia Math. 92 (1989), 73-91.

- 11. D. Zhao & G. Ye: C-integral and Denjoy-C integral. Commun. Korean. Math. Soc. 22 (2007), 27-39
- 12. B. Bongiorno, L. Di Piazza & D. Preiss: A constructive minimal integral which includes Legesgue integrable functions and dirivatives. J. London Math. Soc. 62 (2000), 117-126
- 13. E. Hille & R. S. Pihllips: Functional Analysis and Semigrops. AMS Colloquium Publications XXXI, 1957.
- *COLLEGE OF SCIENCE, HOHAI UNIVERSITY, NANJING, 210098, P. R. CHINA Email address: xiaojiezhang@hhu.edu.cn
- **COLLEGE OF SCIENCE, HOHAI UNIVERSITY, NANJING, 210098, P. R. CHINA Email address: dafangzhao@hhu.edu.cn
- ****COLLEGE OF SCIENCE, HOHAI UNIVERSITY, NANJING, 210098, P. R. CHINA Email address: yegj@hhu.edu.cn