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ON C-STIELTJES INTEGRAL OF BANACH-VALUED
FUNCTIONS

XIAOJIE ZHANG™, DAFANG ZHAO™AND GUOJU YE***

ABSTRACT. In this paper, we define the C-Stieltjes integral of the functions mapping
an interval [a,b] into a Banach space X with respect to g on [a,b], and the C-Stieltjes
representable operators for the vector-valued functions which are the generalizations
of the Henstock-Stieltjes representable operators. Some properties of the C-Stieltjes
operators and the convergence theorems of the C-Stieltjes integral are given.

1. INTRODUCTION

In 1996 [6] B. Bongiorno introduced a constructive minimal integration process
of Riemann type, called C-integral, which includes the Lebesgue integral and also
integrates the derivatives of differentiable function. B. Bongiorno and L. Di Piazza
[6,7] discussed some properties of the C-integral of real-valued functions. In [3]
ap-Henstock-Stieltjes integral in Banach space has been given, and the dominated
convergence theorem also has been proved. J. Han Yoon, J. Sul Lim and G. Sik Eun
defined the Henstock-Stieltjes integral and its representable and nearly representable
operators for vector-valued function in [2].

In this paper, we define the C-Stieltjes integral and the C-Stieltjes representable
operators for Banach-valued functions. The basic properties of C-Stieltjies integral
will be discussed. Finally, we prove two convergence theorems of the C-Stieltjes
integral.

2. DEFINITIONS AND BASIC PROPERTIES

Throughout this paper [a,b] is a compact interval in R. X will denote a real
Banach space with norm || - || and its dual X*. A partition D is a finite collec-

tion of interval-point pairs {([us,vs], &)}z, where {{u;,v;]}; are non-overlapping
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subintervals of [a,b]. f : [a,b] — X, 8(¢) is a positive function on {a,b], i.c.,
5(€) : [a,b] »R*. We say that D = {[u;,v;|}2, is
(1) a partial partition of [a, ] if {J;_,[ui, v:] C [a,b];
(2) a partition of [a,b] if (J—; [ui, vi] = [a, b];
(3) a é-fine McShane partition of [a, b] if [u;, vi] C B(&;, 0(€)) = (§&i—6(§), & +6(8))
and & € [a,b] for all i = 1,2,...,n;
(4) a é-fine C-partition of [a,d] if for the given € > 0, it is a é-fine McShane
partition of [a,b] and satisfying the condition

n . 1
Zdzst(&, [ui, vi]) < e

i=1

here dist(&;, [ui, vi]) = inf{Jt; — &I : i € [ui,vi]}-

Given an d-fine C-partition D = {([u;, vi], &)} iy We write

S(f,D) =Y F(&)(wi — w)
i=1

for the integral sums over D, whenever f : [a,b] — X.

Definition 1. A function f : [a,b] — X is C-integrable if there exists a vector
A € X such that for every € > 0 there is a positive function §(£) : [a,b] — RT such
that

IS(f, D) — Al < e
for each §-fine C-partition D = {[u;, v;], &} of [a,b]. A is called theC-integral of
b b
f on [a,b] and we WriteA=/ forA= (C)/ I
The function f is C’-intengble on the set E(‘L C |a,b] if the function fxg is C-

b
integrable on [a,b]. We write/ f= / fxEe-
E a

Definition 2. Let g : [a,b] — R be an increasing function. A function f : [a,b] —» X
is C-Stieltjes integrable with respect to g on [a, ] if there exists a vector A € X such
that for cvery € > 0 there is a positive function §(¢) : [a,b] — R* such that

IS(f,9.D) — A| <e

for each é-fine C-partition D = {([u;,vi], &)}, of [a,b], whenever

=1

5(7,9,D) = 3 S(€)lgtws) — g(w)

-1
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for the integral sums over D. A is called the C-Stieltjes integral of f with respect to
b
g on [a,b], and we write A = / fdg.
a

We can easily get the following basic properties of C-Stieltjes integral.
Theorem 3. Let g : [a,b] — R be an increasing function.

(1) If f is C-Stieltjes integrable with respect to g on [a,b], then f is C-Stieltjes
integrable with respect to g on every subinterval [c,d] C [a,b]. In addition,
if ¢ € (a,b), then

/:fdg+/cbfdg=/abfdg.

(2) If f1 and fa are C-Stieltjes integrable with respect to g on [a,b] and o, 8 are
real numbers, then afi + Bfs is C-Stieltjes integrable with respect to g on
[a,b] and

/ab(afl + Bf2)dg = Oé/ab fidg + 3/; fadg.

(3) Let g1, g2 be increasing real functions on [a,b] and o, B be real numbers. If
[ is C-Stieltjes integrable with respect to both g and g3 on |a,b], then the
Junction f is C-Stieltjes integrable with respect to ag1 + 3g2 on [a,b] and

/abfd(agl + Bg2) =01/abfdg1+ﬁ/abfdg2-

Corollary 1. Let g : [a,b] — R be an bounded variation function and f be continu-
ous. Then f is C-Stieltjes integrable with respect to g on [a,b].

Proof. Since g : [a,b] — R is an bounded variation function, we may assume that g is
nondecreasing on [a, b] and by the definition of the C-Stieltjes integral and continuity
of f, f is C-Stieltjes integrable with respect to g on [a, b]. O

Lemma 1 (Saks-Henstock). Let f : [a,b] — X be C-Stieltjes integrable with respect
to g on [a,b]. Then for every € > O there is a positive function 6(¢) : [a,b] — Rt
such that ,
|str.a.0) - [ a5 <
a

for each §-fine C-partition D = {(1,€)} of [a,b].
Particularly, if D' = {([ui, vs), &) }izq is an arbitrary §-fine partial C-partition of
[a,b], we have
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”S(f,g,D’)—Z " f(edg|| <

qz=] VUi

Proof. The proof is similar to the proof of Henstock-Stieltjes integral, secc Lemma,
2.5 in [3]. [

Theorem 4. Let g : [a,b] — R be an increasing function and g € C*([a,b]). If
f = 0 almost everywhere on [a,b], then f is C-Stieltjes integrable with respect to g
b

on [a, b and/ fdg=26.
a

Proof. Since g € C([a,b]), there exists a number M > 0 such that |¢'(€)] < M for
ecach € € [a,b]. From the mean-valued theorem we know that there exists f; € [ui, vj
such that
9(ve) — 9(w) = ¢'(€) (vi — wa).

Assume E = {£ € [a,b] : f(§) # 6} and E = |, En C [a,b)], where E, = {£ € [a,}] :
n—1<|f(€)] < n}. Obviously, u(E) = 0 and therefore u(E,) = 0. Then there
are an open sets G, C [a,b] such that £, C G, and u(Gn) < —55;. We choose a
positive function §(§) : Iy — R* as follows: for each ¢ € E,, B(£,58(¢)) € G, and
6(¢) is arbitrary for £ € [a,b] \ E. For each §-fine C-partition D = {([u,v].£€)} of
[a,b], we have

IS(f,9,D) = 6] = || > > f&)lg(vi) — g(us)]
n=1§,€E,
E Z f(&z &1 ('Uz— i)
n-l{,eEn
< ;n M. mi— =E&.

Hence, f is C-Stieltjes integrable with respect to g on [a,b] and
b
/ fdg=86.
a

Corollary 2. Let f; : [a,b] — X be C-Stieltjes integrable with respect to g on [a,b].
If fi = fa almost everywhere on [a,b], then fo is C-Stieltjes integrable with respect
b b

to g on [a,b] and/ fidg =/ fodg.
a a

a
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3. THE C-STIELTIES REPRESENTABLE OPERATORS

Definition 5. A continuous linear operator T : Lj[a,b] — X is C-Stieltjes rep-

resentable with respect to g if there exists a scalar essentially bounded C-Stieltjcs
b

integrable function % : [a,b] — X with respect to g such that 7(f) = / fhdg, for
a

every f € Ly[a,b].

Theorem 6. Assume that X, Y are real Banach spaces, g : [a,b] — R is an

increasing function and f : [a,b] — X is C-Stieltjes integrable with respect to g. If

T:X —Y is a continuous linear operator, then T(f) is C-Stieltjes integrable with
respect to g such that

T(/abfdg) =/:)T(f)dg for all f € Li[a,b).

Proof. Since T : X — Y is a continuous linear operator, there exists a number
M > 0 such that ||Tz|| < M|z|| for each z € X. Since f : [a,b] — X is C-Stieltjes
integrable with respect to g on [a, b], for each € > 0 there is a § > 0 such that

b
Hsu, 9.0~ [ sdg

a

M
for each é-fine C-partition D = {([ui,vi], &)}r, of [a,b], where

S(£,9.D) =) f(€:)low:) - g(ws).

i=1

Hence we have

strton)=1( [[ss)| = [r(sue- [ 1a)|

b
SM-$S(f,D>—/f
<M-%=e.

So,

T( / b fdg) -/ " 1(f)do.

Theorem 7. If T : Lifa,b] — X is C-Stieltjes representable with respect to g and
S : X — Y is any continuous linear operator. Then S(T) : Li[a,b] — Y is C-

O

Stieltjes representable with respect to g.



76 XIAOJIE ZHANG", DAFANG ZHAO™*AND GUOJU YE***

Proof. The proof is similar to Theorem 2.4 in [5]. O

Theorem 8. Assume that T,G : Li[a,b] — X are C-Stieltjes representable with

respect to g. Then k1T+koG is C-Stieltjes representable with respect to g for arbitrary
k1, kg € R.

Proof. We will prove that k7" and T + G are C-Stieltjes representable with respect
to g.

(1) Suppose that a bounded linear cperator T : Li[a,b] — X is C-Stieltjes rep-
resentable with respect to g, there exists a scalarly essentially bounded C-Stieltjes
integrable function h : [a,b] — X with respect to g such that

b
7() = [ fhag

Since T : L[a,b] — X is bounded linear operator, kT : Li[a,b] — X is a bounded
linear operator for arbitrary k in R and T is a C-Stieltjes representable with respect
to g. Hence, ‘

b b
(7)) = [ k(imdg = [ fikhyds,
a a
Thus, kT : Ly[a,b] — X is C-Stieltjes representable with respect to g.
(2) Since the bounded linear operators T and G are C-Stieltjes representable with
respect to g, there exist scalar essentially bounded C-Stieltjes integrable function
hy: Li(a,b] — X and ho : Li[a,b] — X with respect to g such that

b b
T(f) = / fhadg, G(f) = / fhadg

for all f € Ly[a,b]. Since T, G are bounded linear operators, T+ G is also a bounded
linear operator and hj + hy is scalar essentially bounded C-Stieltjes representable
with respect to g. Hence

b b b
(T +G)(f) = T(f) + G(f) = / fhidg + / fhadg = / F(ha + ha)dg.

This means that T+ G is C-Stieltjes representable with respect to g. Therefore,
k1T + k3G : Li[a,b] — X is C-Stieltjes representable with respect to g. O

T

Theorem 9. Let f : [a,b] — X be C-integrable on [a,b] and F(z) = / f for each
z € [a,b]. If G : [a,b] — R is of bounded variation on [a,b], then fG isaC-z'ntegmble

" on [a,b] and

/a ' FG = F(b)G(b) - / ' Fac.
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Proof. Let € > 0. Since f is C-integrable on [a, b], there exists a positive function d;
defined on [a, b] such that
<E€

st.00- [ 1

whenever Dy = {(u;,%;),&:} is a 6;-fine C-partition of [a,b]. F is the primitive
=1

of f, then F' is continuous and therefore uniformly continuous on [a,b]. We claim
that F' is C-Stieltjes integrable on [a,b] with respect to G, the proof is similar to
(13, Theorem 3.3.2]. Then there exists a positive function § < 8; such that

ZF (e)(G(x;) — G(zi-1)) —/bFG’

a

By the Saks—Henstock Lemma, we have

Y flei)(@i — wi1) - Fla:)

k=1
whenever D = {([z;-1, ], ¢;)}%, is a §-fine C-partition of [a,b]. Let
D = {([zk-1, ze], cx) Fozs

be a é-fine C-partition of [a, ] and assume that each tag c; occurs only once. Note
that ¢; = o and that ¢, = b. By the Saks-Henstock Lemma and Abel transform

formula, we obtain

n b
S Fler)Gle) ok - zy) — (F(b)G<b> -/ FG') “

k=1
Z (Zf(‘% @i — 2i-1)(Glex) ~ G(Ck+1))>

k=1

Zf(g)(zi —z;1)G(cn) — (F(O)G / FG') ’,
i=1

k
D (e (@i — zima) - F(ax))

-]

n—1
<Y " 1G(er) = Gleke)]
k=1

n—1 b
S P@e)(Glews) ~ Glew) — [ FG
k=1 @

+{G(®)

> (fles) (@i — o) — F(b))”
i=1
< eV(G,[a,b]) + € + €|G®)]
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=e(V(G, [a,8]) + 1+ [G(D)]).
This completes the proof. O
Remark 1. In fact, B. Bongiorno discussed theorem 3.5 in {12, Theorem 4.2] for the

case of real valued functions. Here, we extend this result to Banach-valued functions.
We can easily get the following corollary.
Corollary 3. Let f : [a,b] = X be C-integrable on [a,b] and F(z) = [ f for each

z € [a,b]. If G : [a,b] — R is absolutely continuous on [a,b], then fG is C-integrable
on [a,b] and

/a ’ fG = F(b)G(b) — / " FdG.

4. CONVERGENCE THEOREMS

Definition 10. Let g : [a,b] — R be an increasing function. A sequence {f;} is C-
Stieltjes equi-integrable with respect to g on [a, b] if each fi is C-Stieltjes integrable
with respect to g and for each € > 0 there is a positive function §(¢) : [a,b] — R
such that

b
S(fx,9.D) —~ f fkdg” <e VkeN
for each é-fine C-partition D = {([u;, vi], 51.)}?:1 of [a, b

Theorem 11. Assume that g : [a,b] — R be an increasing function and fy : [a,b] —
X be C-Stieltjes equi-integrable with respect to g on [a,b] such that

Jim fu(€) = £(6) Ve € [a,b]
Then the function f : [a,b] =X is C-integrable with respect to g on [a,b] and

b b
lim/ fkdg=/ fdg.
k—o0

Proof. We will prove that / frdg has the limit A and / fdg = A.

(1) Let € > 0. Since {fx} is C-Stieltjes equi-integrable on [a,b], there exists a
8(¢) > 0 for any d-fine C-partition D = {([u;, vs}, &)}y of [a,b],

b
S(fkvgaD’ '—/ fkdg‘ <E

for all k. Since {fz} converges point-wise on [a,b], there exists a positive integer
N € N such that
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|S(fx, 9, D) = S(f1,9.D)|| <
for all £,/ > N. Then we have

/ab frdg — /abfldg” : Hs(fk,g,D) N /ab fkdg”

+ ”S(fkaga D) - S(flag’ D)”

b
+ Hs(fz,g,D) —/ fzdgH < 3e

forall k,I > N

b
Hence, the sequence { fkdg} of elements of X is a Cauchy sequence. Let A

be the limit of this sequencg. Then

b
lim frdg=Ae X.
k—oo0

a

b
(2) Since limg_,oo | frdg = A, for each € > 0 there is a m € N such that

[

b
for all k > m. We will prove that / fdg=
Take any §-fine C-partition D =a{([u, v], &)} of [a,b]. Since limg_ o0 fr(&) = F(£),
there is a £ > m such that

|1S(f. 9, D) = S(f,9. D)|| <&

Thus, we have

||S(f,9.D) ~ A|| < ||S(f,9, D) - S(f.9, D)

+“5(fk,9,D)—/a fdeH
/abfkdg - A“ < 3.

This means that f is C-Stieltjes integrable with respect to g on [a,b] and
b b
lim / frdg = / fdg.
k—oo Jg a

Definition 12. Let F: [a,b] — X and let E be a subset of [a, b].
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(a) F is said to be ACs on E if for each ¢ > 0 there is a constant 5 > 0 and a
positive function §(¢) : [a,b] — R* such that || 3", F([u;,v:))|| < € for each
¢ - fine partial partition D = {([u;, vi], &)} of [a, ] satisfying the endpoints
of [u;,v;] belonging to E and Y, lv; — us| < n.

(b) F is said to be AC. on E if for each £ > 0 there is a constant > 0 and a
positive function 6(¢) : [a,b] — R* such that 3, {[F([u;,v])[| < € for cach
d-fine partial C-partition D = {([u;,v], &)} of [a, b] satisfying the endpoints
of [u;,v;] belonging to E and $_, |v; — u;| < 7.

(c) F is said to be ACGj if F is continuous on E and E can be expressed as a
union of countable sets on which F is AC; .

(d) F'is said to be ACG. on E if F is continuous on E and E can be expressed
a union of countable sets on which F is AC,.

Theorem 13. Assume that g : [a,b] — R is an increasing function and g € C'a,b).
If functions fy, : [a,b] — X are C-Stieltjes integrable with respect to g such that

1) fa(x) — f(z) for all z € [a,b];
2) there exists a real-valued function h that is C-Stieltjes integrable with respect
to g on [a,b] and such that || fn, — fmll < h for each n,m.

Then f is C-Stieltjes integrable with respect to g on [a,b] and
Jim Jndg —/ fdg.

Proof. We will prove this theorem by three steps.

(1) Assume E; = {€ € [a,b] :  — 1 < |h(£)] < j} for each natural number j.
Then [a,b] = U; E;. Let € > 0 and H{z) = [* hdg. We claim that H(z) is ACG,
on [a,b]. By Saks-Henstock lemma, for the given € > 0, there is a positive function
4 such that

€
D Ir(gi)(g(vi) ~ g(wa)) — H (i, v)] < 5
for each é-fine partial C-partition D = {([us,vi],&)} of [a,b], whenever & € Ej,
H(wv) = [ hdo.

Let M be a bound of the function ¢ on [a,b]. By the Mean Value Theorem, for
each i, there exists z; € (u;,v;) such that

(1) 9(vi) — g(w;) = ¢’ (@) (vi — wi) < M(vi — ug).

Choose 1 < oafnp=ay and let 3°,(vi — u;) < 0, then we have
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|3 H s w)| < 3 1h(E) (0(0) — 9(w)) — H(i,0)
2 + ) IR(E)lg () (v — w)

3
€
< 3 +ani:(vi —u;) <e

Hence, H(z) is AC. on E; and therefore H is ACG, on |a,b].
(2) Since H (z) is AC. on Ej for each j, there exists ; > 0 such that

Z]H(vz-,ui)} <eg-277
i
whenever {[u;, v;]} is a finite collection of non-overlapping intervals in [a, b] satisfying

i [vi —ug| < mj and u;,v; € Ej. Since h(z) is C-Stieltjes integrable with respect to
g on [a,b], there is a choice 8 > 0 such that

5 |e)ats) - o) - [ hao]

2

<g

for each é,— fine C-partition Dy, = {([u;, v, £)} of [a, b].
Let Do = {([us,v:],€)} be a 8~ fine partial C-partition of [a,b] and u;,v; € Ej,
Z&Ej Jvi — u;} < m;. Then for each n,m, we have

[ tuda= X2 [ ol <3 [ 5 ity
(3) < Z/u hdg
= i Z /v1 hdg < €.

j=1 {eE]‘ w

Since {f,} is C-Stieltjes integrable with respect to g on [a, b], for the given £ > 0,
there exists 6, and 6,41 < &, such that

S falaw) = 9w) = Y [ s

for each dn-fine C-partition D, = {([u,v],£)} of [a,b]. For each £ € E;, choose
m(§) € N for all n,m > m(£) such that

(5) [[fa(€) — fm()]l <e.
(3) In the following, we will prove {f,} is C-Stieltjes equi-integrable with respect

<g-27"

(4)

to g on [a, b].
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Let 6(§) = min{dpm)(€); 0n(€)},€ € Ej,j = 1,2-.. . Take any J— fine C-partition
D = {([us,v],€)} of [a,b], splitting the sum Y over D into two partial sums over
D; and Dy with m(£) > n and m(£) < n respectively. When m(¢) > n, the sum

over D; has finite terms, so,

> [fn(g(vi) - g(w)) — /u v fndg] <e

Dy

For the sum Y over D we have

) [fn(g(vi) - otw)) - [ fndg]

D
< %: [fn(g(w)—g(ui)) - /u v fndg}
g)> [ nla(e) — gtus) - [ tua]

(6)

<€+

Z(fn = Fr(e)(g(vi) — glus))

9(us)) / fm(e)dg]

[/ [ 1]

From the formula (5), we obtain

> (fn = Frie)(9(wi) ~ g(w))|| < e(b— a).
D,
By (4)
> [fm(g) (90 - g(w)) - [ fm(g)dg] <e
Dy Ui
and by (3),

S| [ miodo- [ fudg| | <
D2 Ui 7
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Therefore, from (6) and the above inequalities we have that

S inlo(o) - g} = [ fadd

D i
<etelb—a)tete
=¢elb—a+3).

Then for all n € N, {f,} is C-Stieltjes equi-integrable. By Theorem 4.2, f is

C-Stieltjes integrable with respect to g on [a,b] and

Jm [ * fudg = / fdg.
O

Remark 2. The previous theorem holds for the Ap-Henstock-Stieltjes integral [3].
We prove that it also holds for the C-Stieltjes integral.
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