• Title/Summary/Keyword: Integral equation method

Search Result 606, Processing Time 0.029 seconds

ON AN EQUATION CONNECTED WITH THE THEORY FOR SPREADING OF ACOUSTIC WAVE

  • Zikirov, O.S.
    • East Asian mathematical journal
    • /
    • v.27 no.1
    • /
    • pp.51-65
    • /
    • 2011
  • In the paper, we study questions on classical solvability of nonlocal problems for a third-order linear hyperbolic equation in a rectangular domain. The Riemann method is applied to the Goursat problem and solution is obtained in the integral form. Investigated problems are reduced to the uniquely solvable Volterra-type equation of second kind. Influence effects of coefficients at lowest derivatives on correctness of studied problems are detected.

THE RELIABLE MODIFIED OF LAPLACE ADOMIAN DECOMPOSITION METHOD TO SOLVE NONLINEAR INTERVAL VOLTERRA-FREDHOLM INTEGRAL EQUATIONS

  • Hamoud, Ahmed A.;Ghadle, Kirtiwant P.
    • Korean Journal of Mathematics
    • /
    • v.25 no.3
    • /
    • pp.323-334
    • /
    • 2017
  • In this paper, we propose a combined form for solving nonlinear interval Volterra-Fredholm integral equations of the second kind based on the modifying Laplace Adomian decomposition method. We find the exact solutions of nonlinear interval Volterra-Fredholm integral equations with less computation as compared with standard decomposition method. Finally, an illustrative example has been solved to show the efficiency of the proposed method.

Integral equation formulation for electromagnetic coupling through an arbitrarily shaped aperture into a parallel-plate waveguide (임의 형태의 개구에 의한 평행평판 도파관으로의 전자기적 결합 문제 해석을 위한 적분 방정식 방법)

  • Lee, Young-Soon;Lee, Chang-Won;Cho, Young-Ki;Son, Hyon
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.12
    • /
    • pp.25-35
    • /
    • 1995
  • An analysis method of electromagnetic coupling through an arbitrarily shaped aperture on the upper wall of parallel-plate waveguide, when excited by an electromagnetic plane wave from outside, is considered. The mixed-potential integral equation, in which Green's functions are expressed in a computationally efficient closed form by using the Prony's method and the Sommerfeld identity, is formulated. Expanding the unknown equivalent magnetic surface current in terms of two-dimensional rooftop-type basis functions and choosing razor testing, the integral equation is reduced to a linear algebraic equation, which is solved. The results are compared with the previous results. Fairly good agreements between them are observed.

  • PDF

Prediction of Sound Field Inside Duct with Moving Medium by using one Dimensional Green's function (평균 유동을 고려한 1차원 그린 함수를 이용한 덕트 내부의 음장 예측 방법)

  • Jeon, Jong-Hoon;Kim, Yang-Hann
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.915-918
    • /
    • 2005
  • Acoustic holography uses Kirchhoff·Helmholtz integral equation and Green's function which satisfies Dirichlet boundary condition Applications of acoustic holography have been taken to the sound field neglecting the effect of flow. The uniform flow, however, changes sound field and the governing equation, Green's function and so on. Thus the conventional method of acoustic holography should be changed. In this research, one possibility to apply acoustic holography to the sound field with uniform flow is introduced through checking for the plane wave in a duct. Change of Green's function due to uniform flow and one method to derive modified form of Kirchhoff·Heimholtz integral is suggested for 1-dimensional sound field. Derivation results show that using Green's function satisfying Dirichlet boundary condition, we can predict sound pressure in a duct using boundary value.

  • PDF

NUMERICAL SOLUTION OF A CLASS OF TWO-DIMENSIONAL NONLINEAR VOLTERRA INTEGRAL EQUATIONS OF THE FIRST KIND

  • Tari, Abolfazl;Shahmorad, Sedaghat
    • Journal of applied mathematics & informatics
    • /
    • v.30 no.3_4
    • /
    • pp.463-475
    • /
    • 2012
  • In this work, we investigate solving two-dimensional nonlinear Volterra integral equations of the first kind (2DNVIEF). Here we convert 2DNVIEF to the two-dimensional linear Volterra integral equations of the first kind (2DLVIEF) and then we solve it by using operational approach of the Tau method. But for solving the 2DLVIEF we convert it to an equivalent equation of the second kind and then by giving some theorems we formulate the operational Tau method with standard base for solving the equation of the second kind. Finally, some numerical examples are given to clarify the efficiency and accuracy of presented method.

COMBINED LAPLACE TRANSFORM WITH ANALYTICAL METHODS FOR SOLVING VOLTERRA INTEGRAL EQUATIONS WITH A CONVOLUTION KERNEL

  • AL-SAAR, FAWZIAH M.;GHADLE, KIRTIWANT P.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.22 no.2
    • /
    • pp.125-136
    • /
    • 2018
  • In this article, a homotopy perturbation transform method (HPTM) and the Laplace transform combined with Taylor expansion method are presented for solving Volterra integral equations with a convolution kernel. The (HPTM) is innovative in Laplace transform algorithm and makes the calculation much simpler while in the Laplace transform and Taylor expansion method we first convert the integral equation to an algebraic equation using Laplace transform then we find its numerical inversion by power series. The numerical solution obtained by the proposed methods indicate that the approaches are easy computationally and its implementation very attractive. The methods are described and numerical examples are given to illustrate its accuracy and stability.

Development of a Numerical Method for Effective Elastic Analysis of Unbounded Solids with Anisotropic Inclusions (이방성 함유체가 포함된 무한고체의 효과적인 탄성해석을 위한 수치해석 방법 개발)

  • 최성준;이정기
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.04a
    • /
    • pp.41-52
    • /
    • 1998
  • A volume integral equation method and a mixed volume and boundary integral equation method are presented for the solution of plane elastostatic problems in solids containing orthotropic inclusions and voids. The detailed analysis of the displacement and stress fields are developed for orthotropic cylindrical and elliptic-cylindrical inclusions and voids. The accuracy and effectiveness of the new methods are examined through comparison with results obtained from analytical and boundary integral equation methods. Through the analysis of plane elastostatic problems in unbounded isotropic matrix containing orthotropic inclusions and voids, it is established that these new methods are very accurate and effective for solving plane elastostatic and elastodynamic problems in unbounded solids containing general anisotropic inclusions and voids or cracks.

  • PDF

Boundary Integral Equation Method by Cubic Spline (Cubic Spline을 사용한 경계요소법)

  • 서승남
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.2 no.1
    • /
    • pp.11-17
    • /
    • 1990
  • Dirichlet boundary value problems originated from unsteady deep water wave propagation are transformed to Boundary Intergral Equation Methods by use of a free surface Green's function and the integral equations are discretized by a cubic spline element method. In order to enhance the stability of the numerical model based on the derived Fredholm integral equation of 1 st kind, the method by Hsiao and MacCamy (1973) is employed. The numerical model is tested against exact solutions for two cases and the model shows very good accuracy.

  • PDF

A Study on the Analysis of Magnetic Field in Magnetic Deflection Yoke Based on the Oblate Spheroidal coordinates (Oblate Spheroidal 좌표계를 이용한 자기 편형요크내의 자장 해석에 관한 연구)

  • Seo, Jeong-Doo;Yoo, Hyeong-Seon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.3
    • /
    • pp.117-124
    • /
    • 1993
  • This paper presents the study on the magnetic field analysis of magnetid deflection yoke using integral equation method. An integral equation method is developed for the computer modeling of the magnetic fields produced by color CRT and T.V. deflection yoke. Deflection of electron beams using magnetic fields is applied in a variety of display instruments such as te.evision receivers, electron probe instruments, etc. The magnetic field is solved by dividing these into the finite elements in the whole domain : the saddle coil which deflects the electron heam horizontally, the toroidal coil which deflects it vertically, magnetic core which enhances the magnetid fields genterated by the both coils. Using oblate spheroidal coordinates, this paper has had an easier access to the shape of magnetic deflection yoke chasing the boundaries than other coordinates.

  • PDF