• 제목/요약/키워드: Inorganic nanoparticles

검색결과 119건 처리시간 0.023초

효소 모사 활성 무기 나노입자의 진단 및 치료 응용연구 동향 (Recent Progress in Inorganic Nanoparticles with Enzyme-Mimetic Activities and Their Applications to Diagnosis and Therapy)

  • 이준수;김태연;김봉근;나현빈
    • 공업화학
    • /
    • 제31권4호
    • /
    • pp.352-359
    • /
    • 2020
  • 무기 나노입자는 나노미터 크기에서 유래된 광학 및 자성 성질과 같은 물리적 특성을 활용하여 생명-의학 분야에 적극적으로 응용되어왔다. 최근에는 물리적 성질 이외에 무기 나노입자가 갖는 화학적 성질, 특히 효소와 유사한 촉매활성을 이용한 새로운 진단법들이 개발되고 있다. 효소 모사 활성의 검증에 집중하던 초기연구에서, 현재는 활성 메커니즘의 이해를 통한 적극적 활성 제어 및 치료 특성의 직접적 응용으로 연구 범위가 확장되고 있다. 본 총설에서는 효소 모사 활성을 갖는 무기 나노입자, 소위 "나노자임"의 촉매 활성 제어와 치료 및 진단 분야에서의 연구성과들에 대한 최근 동향을 정리하였다. 무기 나노입자의 효소 모사 활성은 입자의 고유한 물리적 성질과 결합되어 새로운 진단 및 치료법의 개발로 이어질 것으로 기대한다.

One Pot Synthesis and Characterization of Alginate Stabilized Semiconductor Nanoparticles

  • Sundarrajan, Parani;Eswaran, Prabakaran;Marimuthu, Alexander;Subhadra, Lakshmi Baddireddi;Kannaiyan, Pandian
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권10호
    • /
    • pp.3218-3224
    • /
    • 2012
  • Uniform and well dispersed metal sulfide semiconductor nanoparticles incorporated into matrices of alginate biopolymer are prepared by using a facile in situ method. The reaction was accomplished by impregnation of alginate with divalent metal ions followed by reaction with thioacetamide. XRD analysis showed that the nanoparticles incorporated in the polymer matrix were of cubic structure with the average particle diameter of 1.8 to 4.8 nm. Field emission scanning electron microscopy and high resolution transmission electron microscopy images indicated that the particles were well dispersed and distributed uniformly in the matrices of alginate polymer. FT-IR spectra confirmed the presence of alginate in the nanocomposite. The crystalline nature and thermal stability of the alginate polymer was found to be influenced by the nature of the divalent metal ions used for the synthesis. The proposed method is considered to be a simple and greener approach for large scale synthesis of uniform sized nanoparticles.

Au/Titania Composite Nanoparticle Arrays with Controlled Size and Spacing by Organic-Inorganic Nanohybridization in Thin Film Block Copolymer Templates

  • Li, Xue;Fu, Jun;Steinhart, Martin;Kim, Dong-Ha;Knoll, Wolfgang
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권6호
    • /
    • pp.1015-1020
    • /
    • 2007
  • A simple approach to prepare arrays of Au/TiO2 composite nanoparticles by using Au-loaded block copolymers as templates combined with a sol-gel process is described. The organic-inorganic hybrid films with closely packed inorganic nanodomains in organic matrix are produced by spin coating the mixtures of polystyrene-block-poly(ethylene oxide) (PS-b-PEO)/HAuCl4 solution and sol-gel precursor solution. After removal of the organic matrix with deep UV irradiation, arrays of Au/TiO2 composite nanoparticles with different compositions or particle sizes can be easily produced. Different photoluminescence (PL) emission spectra from an organic-inorganic hybrid film and arrays of Au/TiO2 composite nanoparticles indicate that TiO2 and Au components exist as separate state in the initial hybrid film and form composite nanoparticles after the removal of the block copolymer matrix.

Colloidally stable organic-inorganic hybrid nanoparticles prepared using alkoxysilane-functionalized amphiphilic polymer precursors and mechanical properties of their cured coating film

  • Kim, Nahae;Li, Xinlin;Kim, Se Hyun;Kim, Juyoung
    • Journal of Industrial and Engineering Chemistry
    • /
    • 제68권
    • /
    • pp.209-219
    • /
    • 2018
  • Colloidally stable organic-inorganic (O-I) hybrid nanoparticles could be prepared using an alkoxysilanefunctionalized amphiphilic polymer (AFAP) precursor. O-I hybrid sols could maintain colloidal stability for six months even at 45% solid content and be coated onto glass as well as PET film to form transparent O-I hybrid films. The formation of O-I hybrid nanoparticles dispersed in cured coating films could be confirmed using scanning electron microscopy. The cured coating film showed 3H and 5H pencil hardness on PET and glass, respectively. Nanoindentation measurements also showed that their modulus and hardness was varied with the type of AFAP used in its preparation.

Titanium Dioxide Nanoparticles filled Sulfonated Poly(ether ether ketone) Proton Conducting Nanocomposites Membranes for Fuel Cell

  • Kalappa, Prashantha;Hong, Chang-Eui;Kim, Sung-Kwan;Lee, Joong-Hee
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2005년도 추계학술발표대회 논문집
    • /
    • pp.87-90
    • /
    • 2005
  • This paper presents an evaluation of the effect of titanium dioxide nanoparticles in sulfonated poly(ether ether ketone) (SPEEK) with sulfonation degree of 57%. A series of inorganic-organic hybrid membranes were prepared with a systematic variation of titanium dioxide nanoparticles content. Their water uptake, methanol permeability and proton conductivity as a function of temperature were investigated. The results obtained show that the inorganic oxide network decreases the proton conductivity and water swelling. It is also found that increase in inorganic oxide content leads to decrease of methanol permeability. In terms of morphology, membranes are homogeneous and exhibit a good adhesion between inorganic domains and the polymer matrix. The properties of the composite membranes are compared with standard nafion membrane.

  • PDF

Fabrication and characterization of photocurable inorganic-organic hybrid materials using organically modified colloidal-silica nanoparticles and acryl resin

  • Kang, Dong-Jun;Han, Dong-Hee;Kang, Young-Taec;Kang, Dong-Pil
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.422-422
    • /
    • 2009
  • Photocurable inorganic-organic hybrid materials were prepared from colloidal-silica nanoparticles synthesized through the solgel process and using acryl resin. The synthesized colloidal-silica nanoparticles had uniform diameters of around 20 nm, and they were organically modified, using methyl and methacryl functional silanes, for efficient hybridization with acryl resin. The organically modified and stabilized colloidal-silica nanoparticles could be homogeneously hybridized with aeryl resin without phase separation. The successfully fabricated hybrid materials exhibit efficient photocurability and simple film formation due to the photopolymerization of the organically modified colloidal-silica nanoparticles and acryl resin upon UV exposure. The fabricated hybrid films exhibit an excellent optical transmission of above 90% in the visible region as well as an enhanced surface smoothness of around 1 nm RMS roughness. In addition, the hybrid films exhibit improved thermal and mechanical characteristics, much better than those of acryl resin. More importantly, these photocurable hybrid materials fabricated through the synergistic combination of colloidal-silica nanoparticles with acryl resin are candidates for optical and electrical applications.

  • PDF

바이오 세라믹 실리카를 이용한 복합 나노입자 구조체의 합성 (Synthesis of complex nanoparticles using bioceramic silica)

  • 윤석영;이정헌
    • 세라미스트
    • /
    • 제21권3호
    • /
    • pp.283-292
    • /
    • 2018
  • Here, we introduce various type of inorganic nanostructure synthesized with functional nanoparticles and silica. From two decades ago, functional inorganic nanoparticles have been synthesized and highlighted, now we moved to next level of wet-chemical synthesis. By integrating functional nanoparticles with silica, we were able to synthesize multi-functional nanostructure, which expand the applications of nanoparticles to catalyst, drug carrier, sensors. In this context, silica has been spotlighted due to its versatility. Silica has highly biocompatible, relatively transparent and stable under harsh conditions. Thus it can be used as good supporter to synthesize complex multi-functional nanostructure when mixed with other functional nanoparticles. A various shape of complex nanostructures have been synthesized including core-shell type, yolk-shell type and janus type etc. In this paper, we have described the purposes of synthesizing silica noncomplex and various case studies for biomedical applications and self-assembly.

코아 가교 양친성 고분자 나노입자 템플레이트를 이용한 무기물 나노 구조체 합성 (Use of Core-Crosslinked Amphiphilic Polymer Nanoparticles as Templates for Synthesis of Nanostructured Inorganic Materials)

  • 김현지;김나혜;김주영
    • 접착 및 계면
    • /
    • 제16권1호
    • /
    • pp.6-14
    • /
    • 2015
  • 본 연구에서는 양친성 반응성 고분자 전구체를 합성하고 이를 사용하여 화학적, 물리적으로 안정한 코아 가교 양친성 고분자(Core-crosslinked Amphiphilic Polymer; 이하 CCAP) 나노입자를 제조하였으며, CCAP 나노입자를 $TiO_2$ 나노입자 제조의 템플레이트로 응용하였다. 먼저 CCAP 나노입자 수용액과 티타늄 이소프로폭사이드(Titanium isopropoxide)를 혼합하여, 매우 안정한 유/무기 나노하이브리드 솔(Sol)을 제조하였으며, 제조된 솔(Sol)은 회전코팅(Spin coating) 기법을 통해 유/무기 하이브리드 박막으로 제조하고, 소결 공정을 통해서 템플레이트인 CCAP를 제거하여 제조된 $TiO_2$ 나노입자의 미세구조를 주사전자현미경(SEM)을 이용하여서 관찰하였다. 다양한 CCAP 나노입자를 템플레이트로 사용하여 제조된 $TiO_2$ 나노입자의 미세구조를 기존 유기물 템플레이트(계면활성제)를 사용하여 제조된 $TiO_2$ 나노입자의 미세구조와 비교하여, CCAP 나노입자가 $TiO_2$ 나노입자 구조에 미치는 영향을 조사하였다.

Challenge of 2-dimensional Inorganic Nanoparticles in Nuclear Medicine

  • Sairan Eom;Jin-Ho Choy;Kyo Chul Lee;Yong Jin Lee
    • 대한방사성의약품학회지
    • /
    • 제8권2호
    • /
    • pp.119-128
    • /
    • 2022
  • 2-Dimensional inorganic nanoparticles with high surface area and ion-exchangeable properties have been continuously growing based on nanotechnology in the field of nanomedicine. Among one of the 2-D nanoparticles, layered double hydroxide (LDH) has been intensively explored as drug delivery due to its low toxicity, enhanced cellular permeability, and high drug loading capacity. Moreover, controllable chemical composition makes possible varying isomorphic layered materials for therapy and imaging of diseases. In this review, specific structural characteristics of LDH were introduced, and its potential for application as a biocompatible therapeutic agent and diagnostic one was addressed in nuclear medicine, one of promising fields in nanomedicine.

압전 및 비압전 폴리머와 BaTiO3 나노입자로 제조된 유-무기 압전 나노복합체의 발전성능 비교연구 (A Comparison Study of Output Performance of Organic-Inorganic Piezoelectric Nanocomposite Made of Piezoelectric/Non-piezoelectric Polymers and BaTiO3 Nanoparticles)

  • 현동열;박귀일
    • 한국분말재료학회지
    • /
    • 제26권2호
    • /
    • pp.119-125
    • /
    • 2019
  • Piezoelectric energy harvesting technology is attracting attention, as it can be used to convert more accessible mechanical energy resources to periodic electricity. Recent developments in the field of piezoelectric energy harvesters (PEHs) are associated with nanocomposites made from inorganic piezoelectric nanomaterials and organic elastomers. Here, we used the $BaTiO_3$ nanoparticles and piezoelectric poly(vinylidene fluoride) (PVDF) polymeric matrix to fabricate the nanocomposites-based PEH to improve the output performance of PEHs. The piezoelectric nanocomposite is produced by dispersing the inorganic piezo-ceramic nanoparticles inside an organic piezo-polymer and subsequently spin-coat it onto a metal plate. The fabricated organic-inorganic piezoelectric nanocomposite-based PEH harvested the output voltage of ~1.5 V and current signals of ~90 nA under repeated mechanical pushings: these values are compared to those of energy devices made from non-piezoelectric polydimethylsiloxane (PDMS) elastomers and supported by a multiphysics simulation software.