DOI QR코드

DOI QR Code

Challenge of 2-dimensional Inorganic Nanoparticles in Nuclear Medicine

  • Sairan Eom (Division of Applied-RI, Korea Institute of Radiological and Medical Sciences (KIRAMS)) ;
  • Jin-Ho Choy (Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University) ;
  • Kyo Chul Lee (Division of Applied-RI, Korea Institute of Radiological and Medical Sciences (KIRAMS)) ;
  • Yong Jin Lee (Division of Applied-RI, Korea Institute of Radiological and Medical Sciences (KIRAMS))
  • Received : 2022.11.17
  • Accepted : 2022.12.08
  • Published : 2022.12.30

Abstract

2-Dimensional inorganic nanoparticles with high surface area and ion-exchangeable properties have been continuously growing based on nanotechnology in the field of nanomedicine. Among one of the 2-D nanoparticles, layered double hydroxide (LDH) has been intensively explored as drug delivery due to its low toxicity, enhanced cellular permeability, and high drug loading capacity. Moreover, controllable chemical composition makes possible varying isomorphic layered materials for therapy and imaging of diseases. In this review, specific structural characteristics of LDH were introduced, and its potential for application as a biocompatible therapeutic agent and diagnostic one was addressed in nuclear medicine, one of promising fields in nanomedicine.

Keywords

Acknowledgement

This study was supported by a grant from the Korea Institute of Radiological and Medical Sciences (KIRAMS), by the Ministry of Science and ICT (MSIT), the Republic of Korea (No. 50536-2022). This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2022R1C1C2012275).

References

  1. Stark WJ, Stoessel PR, Wohlleben W, Hafner A. Industrial applications of nanoparticles. Chem Soc Rev 2015;44(16):5793-805. https://doi.org/10.1039/C4CS00362D
  2. Poole Jr CP, Owens FJ. Introduction to nanotechnology. John Wiley and Sons; 2003.
  3. Jeevanandam J, Barhoum A, Chan YS, Dufresne A, Danquah MK. Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J Nanotechnol 2018;9(1):1050-74. https://doi.org/10.3762/bjnano.9.98
  4. Khan I, Saeed K, Khan I. Nanoparticles: Properties, applications and toxicities. Arab J Chem 2019;12(7):908-31. https://doi.org/10.1016/j.arabjc.2017.05.011
  5. Martin CR. Welcome to nanomedicine. Nanomedicine 2006;1(1):5.
  6. Freitasjr R. What is nanomedicine? Nanomedicine: Nanomed-Nanotechnol 2005;1(1):2-9.
  7. MIT Technology Review, 10 breakthrough technologies. 2006 http://www2.technologyreview.com/tr10/?year=2006
  8. Wagner V, Dullaart A, Bock AK, Zweck A. The emerging nanomedicine landscape. Nat Biotechnol 2006;24(10);1211-7. https://doi.org/10.1038/nbt1006-1211
  9. "Market report on emerging nanotechnology now available". Market Report. US National Science Foundation. 25 February 2014. Retrieved 30 November 2018. https://www.nsf.gov/news/news_summ.jsp?cntn_id=130586
  10. Nanomedicine Market by Modality (Treatments and Diagnostics), Application (Drug Delivery, Diagnostic Imaging, Vaccines, Regenerative Medicine, Implants, and Others), and Indication (Oncological Diseases, Infectious Diseases, Cardiovascular Diseases, Orthopedic Disorders, Neurological Diseases, Urological Diseases, Ophthalmological Diseases, Immunological Diseases, and Others) - Global Opportunity Analysis and Industry Forecast, 2017-2023. Allied Market Research. August 2017. Retrieved 30 November 2018. https://www.alliedmarketresearch.com/nanomedicine-market
  11. ISO/TS 80004-1:2015, Nanotechnology - Vocabulary - Part 1: Core Terms. International Organization for Standardization: Geneva, Switzerland, 2010. Retrieved 30 November 2018. https://www.iso.org/standard/51240.html
  12. Tiwari JN, Tiwari RN, Kim KS. Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices. Prog Mater Sci 2012;57(4):724-803. https://doi.org/10.1016/j.pmatsci.2011.08.003
  13. Pokropivny VV, Skorokhod VV. Classification of nanostructures by dimensionality and concept of surface forms engineering in nanomaterials science. Mater Sci Eng C 2007;27(5-8):990-3. https://doi.org/10.1016/j.msec.2006.09.023
  14. Chimene D, Alge DL, Gaharwar AK. Two-dimensional nanomaterials for biomedical applications: emerging trends and future prospects. Adv Mater 2015;27(45):7261-84. https://doi.org/10.1002/adma.201502422
  15. Nasilowski M, Mahler B, Lhuillier E, Ithurria S, Dubertret B. Two-dimensional colloidal nanocrystals. Chem Rev 2016;116(18):10934-82. https://doi.org/10.1021/acs.chemrev.6b00164
  16. Choi G, Eom S, Vinu A, Choy JH. 2D nanostructured metal hydroxides with gene delivery and theranostic functions; a comprehensive review. Chem Rec 2018;18(7-8):1033-53. https://doi.org/10.1002/tcr.201700091
  17. Nicolosi V, Chhowalla M, Kanatzidis MG, Strano MS, Coleman JN. Liquid exfoliation of layered materials. Science 2013;340(6139):1226419.
  18. Choy JH, Kwak SY, Park JS, Jeong YJ, Portier J. Intercalative nanohybrids of nucleoside monophosphates and DNA in layered metal hydroxide. J Am Chem Soc 1999;121(6):1399-400. https://doi.org/10.1021/ja981823f
  19. Choy JH, Kwak SY, Jeong YJ, Park JS. Inorganic layered double hydroxides as nonviral vectors. Angew Chem Int Ed 2000;39(22):4041-5. https://doi.org/10.1002/1521-3773(20001117)39:22<4041::AID-ANIE4041>3.0.CO;2-C
  20. Choy JH, Oh JM, Park M, Sohn KM, Kim JW. Inorganic-biomolecular hybrid nanomaterials as a genetic molecular code system. Adv Mater2004;16(14):181-4.
  21. Ogawa M, Kuroda K. Photofunctions of intercalation compounds. Chem Rev 1995;95(2):399-438. https://doi.org/10.1021/cr00034a005
  22. Vaccari A. Clays and catalysis: a promising future. Appl Clay Sci1999;14(4):161-98. https://doi.org/10.1016/S0169-1317(98)00058-1
  23. Khan AI, O'Hare D. Intercalation chemistry of layered double hydroxides: recent developments and applications. J Mater Chem 2002;12(11):3191-8. https://doi.org/10.1039/B204076J
  24. Oh JM, Biswick TT, Choy JH. Layered nanomaterials for green materials. J Mater Chem 2009;9(17):2553-63.
  25. Park DH, Hwang SJ, Oh JM, Yang JH, Choy JH. Polymer-inorganic supramolecular nanohybrids for red, white, green, and blue applications. Prog Polym Sci 2013;38(10-11):1442-86. https://doi.org/10.1016/j.progpolymsci.2013.05.007
  26. Choy JH, Kwak SY, Park JS, Jeong YJ, Choy. Cellular uptake behavior of [γ-32P] labeled ATP-LDH nanohybridsElectronic supplementary information (ESI) available: histogram for Mg solubility of Mg2Al-LDH as a function of pH; FITC-LDH exchange rate according to NaCl concentration (FITC=fluorescein 5-isothiocyanate); cytotoxicity test of Mg2Al-NO3-LDH. J Mater Chem 2001;11(6):1671-4. https://doi.org/10.1039/b008680k
  27. Oh JM, Choi SJ, Lee GE, Han SH, Choy JH. Inorganic drug-delivery nanovehicle conjugated with cancer-cell-specific ligand. Adv Funct Mater2009;19(10):1617-24.
  28. Choi SJ, Choi GE, Oh JM, Oh YJ, Park MC, Choy JH. Anticancer drug encapsulated in inorganic lattice can overcome drug resistance. J Mater Chem 2010;20(42):9463-9. https://doi.org/10.1039/b925831k
  29. Choi G, Piao H, Kim MH, Choy JH. Enabling nanohybrid drug discovery through the soft chemistry telescope. Ind Eng Chem Res 2016;55(43):11211-4. https://doi.org/10.1021/acs.iecr.6b02971
  30. Liu J, Harrison R, Zhou JZ, Liu TT, Yu C, Lu GQM, Xu ZP. Synthesis of nanorattles with layered double hydroxide core and mesoporous silica shell as delivery vehicles. J Mater Chem 2011;21(29):10641-4. https://doi.org/10.1039/c1jm12054a
  31. Bao H, Yang J, Huang Y, Xu ZP, Hao N, Wu Z, Zhao D. Synthesis of well-dispersed layered double hydroxide core@ ordered mesoporous silica shell nanostructure (LDH@mSiO2) and its application in drug delivery. Nanoscale 2011;3(10):4069-73. https://doi.org/10.1039/c1nr10718f
  32. Cavani F, Trifiro F, Vaccari A. Hydrotalcite-type anionic clays: Preparation, properties and applications. Catal Today 1991;11(2):173-301. https://doi.org/10.1016/0920-5861(91)80068-K
  33. De Roy A, Forano C, Besse JP. Layered double hydroxides: present and future. 1st ed. New York: Nova Science Publishers; 2001. p. 1-92.
  34. Aisawa S, Higashiyama N, Takahashi S, Hirahara H, Ikematsu D, Kondo H, Narita E. Intercalation behavior of L-ascorbic acid into layered double hydroxides. Appl Clay Sci 2007;35(3-4):146-54. https://doi.org/10.1016/j.clay.2006.09.003
  35. Choi SJ, Oh JM, Choy JH. Biocompatible nanoparticles intercalated with anticancer drug for target delivery: pharmacokinetic and biodistribution study. J Nanosci Nanotechnol 2010;10(4):2913-6. https://doi.org/10.1166/jnn.2010.1415
  36. Choi SJ, Oh JM, Chung HE, Hong SH, Kim IH, Choy JH. In vivo anticancer activity of methotrexate-loaded layered double hydroxide nanoparticles. Curr Pharm Des 2013;19(41):7196-202. https://doi.org/10.2174/138161281941131219123718
  37. Choy JH, Son YH. Intercalation of vitamer into LDH and their controlled release properties.Bull Korean Chem Soc 2004;25(1):122-6. https://doi.org/10.5012/bkcs.2004.25.1.122
  38. Choi G, Piao H, Alothman ZA, Vinu A, Yun CO, Choy JH. Anionic clay as the drug delivery vehicle: tumor targeting function of layered double hydroxide-methotrexate nanohybrid in C33A orthotopic cervical cancer model. Int J Nanomedicine 2016;11:337.
  39. Ribeiro LN, Alcantara AC, Darder M, Aranda P, Araujo-Moreira FM, Ruiz-Hitzky E. Pectin-coated chitosan-LDH bionanocomposite beads as potential systems for colon-targeted drug delivery. Int J Pharm 2014;463(1):1-9. https://doi.org/10.1016/j.ijpharm.2013.12.035
  40. Ambrogi V, Fardella G, Grandolini G, Perioli L. Intercalation compounds of hydrotalcite-like anionic clays with antiinflammatory agents-I. Intercalation and in vitro release of ibuprofen. Int J Pharm 2001;220(1-2):23-32. https://doi.org/10.1016/S0378-5173(01)00629-9
  41. Trikeriotis M, Ghanotakis DF. Intercalation of hydrophilic and hydrophobic antibiotics in layered double hydroxides. Int J Pharm 2007;332(1-2):176-84. https://doi.org/10.1016/j.ijpharm.2006.09.031
  42. Ryu SJ, Jung H, Oh JM, Lee JK, Choy JH. Layered double hydroxide as novel antibacterial drug delivery system. J Phys Chem Solids 2010;71(4):685-8. https://doi.org/10.1016/j.jpcs.2009.12.066
  43. Choy JH, Oh JM, Park M, Sohn KM, Kim JW. Inorganic-biomolecular hybrid nanomaterials as a genetic molecular code system. Adv Mater2004;16(14):1181-4. https://doi.org/10.1002/adma.200400027
  44. Park DH, Cho J, Kwon OJ, Yun CO, Choy JH. Biodegradable inorganic nanovector: passive versus active tumor targeting in siRNA transportation. Angew Chem Int Ed 2016;55(14):4582-6. https://doi.org/10.1002/anie.201510844
  45. Choi G, Jeon IR, Piao H, Choy JH. Highly condensed boron cage cluster anions in 2d carrier and its enhanced antitumor efficiency for boron neutron capture therapy. Adv Funct Mater 2018;28(27):1704470.
  46. Abellan G, Marti-Gastaldo C, Ribera A, Coronado E. Hybrid materials based on magnetic layered double hydroxides: a molecular perspective. Acc Chem Res 2015;48(6):1601-11. https://doi.org/10.1021/acs.accounts.5b00033
  47. Carrasco JA, Cardona-Serra S, Clemente-Juan JM, Gaita-Arino A, Abellan G, Coronado E. Deciphering the role of dipolar interactions in magnetic layered double hydroxides. Inorg Chem 2018;57(4):2013-22. https://doi.org/10.1021/acs.inorgchem.7b02928
  48. McRobbie DW, Moore EA, Graves MJ. MRI from Picture to Proton. Cambridge University Press; 2017. p. 1-7.
  49. Khalil MM, Tremoleda JL, Bayomy TB, Gsell W. Molecular SPECT Imaging: An Overview, Int J Mol Imaging 2011;2011:1-15.
  50. Dufort S, Sancey L, Wenk C, Josserand V, Coll JL. Optical small animal imaging in the drug discovery process. Biochim Biophys Acta - Biomembr 2010;1798:2266-73. https://doi.org/10.1016/j.bbamem.2010.03.016
  51. Phillips WT, Goins BA, Bao A. Radioactive liposomes. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2009;1(1):69-83. https://doi.org/10.1002/wnan.3
  52. Sheets NC, Wang AZ. Radioisotopes and nanomedicine. In: Shing N, editor. Radioisotopes-Applications in Bio-Medical Science. InTech; 2011. p. 47-66.
  53. Livieratos L. Basic Principles of SPECT and PET Imaging. In: Fogelman I, Gnanasegaran G, Van der Wall H, editors. Radionuclide and hybrid bone imaging. Springer: Berlin Heidelberg; 2013. p. 345-359.
  54. Gambhir SS. Molecular imaging of cancer with positron emission tomography. Nat Rev Cancer 2002;2(9):683.
  55. Shi S, Fliss, BC, Gu Z, Zhu Y, Hong H, Valdovinos HF, Hernandez R, Goel S, Luo H, Chen F, Barnhart TE, Nickles RJ, Xu ZP, Cai W. Chelator-free labeling of layered double hydroxide nanoparticles for in vivo PET imaging. Sci Rep 2015;5(1);1-10.
  56. Kim TH, Lee JY, Kim MK, Park JH, Oh JM. Radioisotope Co-57 incorporated layered double hydroxide nanoparticles as a cancer imaging agent. RSC Adv 2016;6(54);48415-9. https://doi.org/10.1039/C6RA06256C
  57. Eom S, Kim MH, Yoo R, Choi G, Kang JH, Lee YJ, Choy JH. Dilute lattice doping of 64Cu into 2D-nanoplates; its impact on radio-labeling efficiency and stability for target selective PET imaging. J Mater Chem B 2022;10;9389-99. https://doi.org/10.1039/D2TB01165D