DOI QR코드

DOI QR Code

Colloidally stable organic-inorganic hybrid nanoparticles prepared using alkoxysilane-functionalized amphiphilic polymer precursors and mechanical properties of their cured coating film

  • Kim, Nahae (Department of Advanced Materials Engineering, Kangwon National University) ;
  • Li, Xinlin (Department of Mechanical Engineering Science, Yeungnam University) ;
  • Kim, Se Hyun (Department of Mechanical Engineering Science, Yeungnam University) ;
  • Kim, Juyoung (Department of Advanced Materials Engineering, Kangwon National University)
  • Received : 2018.05.15
  • Accepted : 2018.07.29
  • Published : 2018.12.25

Abstract

Colloidally stable organic-inorganic (O-I) hybrid nanoparticles could be prepared using an alkoxysilanefunctionalized amphiphilic polymer (AFAP) precursor. O-I hybrid sols could maintain colloidal stability for six months even at 45% solid content and be coated onto glass as well as PET film to form transparent O-I hybrid films. The formation of O-I hybrid nanoparticles dispersed in cured coating films could be confirmed using scanning electron microscopy. The cured coating film showed 3H and 5H pencil hardness on PET and glass, respectively. Nanoindentation measurements also showed that their modulus and hardness was varied with the type of AFAP used in its preparation.

Keywords

Acknowledgement

Supported by : Korea Institute of Energy Technology Evaluation and Planning (KETEP)

References

  1. A. Arkhireeva, J.N. Hay, J.M. Lane, M. Manzano, H. Masters, W. Oware, S.J. Shaw, J. Sol-Gel. Sci. Technol. 31 (2004) 31. https://doi.org/10.1023/B:JSST.0000047956.24117.89
  2. A. Arkhireeva, J.N. Hay, W.J. Oware, J. Non-Cryst. Solids 351 (2005) 1688. https://doi.org/10.1016/j.jnoncrysol.2005.04.063
  3. D.J. Boday, S. Tolbert, M.W. Keller, Z. Li, J.T. Wertz, B. Muriithi, D.J. Loy, J. Nanopart. Res. 16 (2014) 2313. https://doi.org/10.1007/s11051-014-2313-6
  4. A. Ide, G. Thomas, A. Scholz, Langmuir 24 (2008) 12539. https://doi.org/10.1021/la801374u
  5. V. Linsha, A.P. Mohamed, S. Ananthakumar, Chem. Eng. J. 259 (2015) 313. https://doi.org/10.1016/j.cej.2014.07.137
  6. O. Sel, S. Sallard, T. Brezesinski, J. Rathousky, D.R. Dunphy, A. Collord, B.M. Smarsly, Adv. Funct. Mater. 17 (2007) 3241. https://doi.org/10.1002/adfm.200700079
  7. D. Kuang, T. Brezesinski, B. Smarsly, J. Am. Chem. Soc. 126 (2004) 10534. https://doi.org/10.1021/ja0470618
  8. M.S. Skoc, J. Macan, E. Pezelj, J. Appl. Polym. Sci 131 (2014) 39914.
  9. N.L. Bail, K. Lionti, S. Benayoun, S. Pavan, L. Thompson, C. Gervais, G. Dubois, B. Toury, J. Sol-Gel. Sci. Technol. 75 (2015) 710. https://doi.org/10.1007/s10971-015-3781-6
  10. K.M.S. Meera, R.M. Sankar, S.N. Jaisankar, A.B. Mandal, J. Phys. Chem. B 117 (2013) 2682. https://doi.org/10.1021/jp3097346
  11. S. Neyshtadt, J.P. Jahnke, R.J. Messinger, A. Rawal, T.S. Peretz, D. Huppert, B.F. Chmelka, G.L. Frey, J. Am. Chem. Soc. 133 (2011) 10119. https://doi.org/10.1021/ja200054z
  12. R.B. Figueira, C.J.R. Silva, E.V. Pereira, J. Coat. Technol. Res. 12 (2015) 1. https://doi.org/10.1007/s11998-014-9595-6
  13. M. Zaharescu, M. Crisan, L. Predoana, M. Gartner, D. Cristea, S. Degeratu, E. Manea, J. Sol-Gel Sci. Technol. 32 (2004) 173. https://doi.org/10.1007/s10971-004-5784-6
  14. M.A. Robertson, R.A. Rudkin, D. Parsonage, A. Atkinson, J. Sol-Gel Sci. Technol. 26 (2003) 91.
  15. S. Pandey, S.B. Mishra, J. Sol-Gel Sci. Technol. 59 (2011) 73. https://doi.org/10.1007/s10971-011-2465-0
  16. S. Gross, K. Muller, J. Sol-Gel Sci. Technol. 60 (2011) 283. https://doi.org/10.1007/s10971-011-2565-x
  17. T. Sen, G.J.T. Tiddy, J.L. Casci, M.W. Anderson, Angew. Chem. Int. Ed. 42 (2003) 4649. https://doi.org/10.1002/anie.200351479
  18. A. Adamatzky, Eur. Phys. J. E 31 (2010) 403. https://doi.org/10.1140/epje/i2010-10589-y
  19. K. Letchford, H. Burt, Eur. J. Pharm. Biopharm. 65 (2007) 259. https://doi.org/10.1016/j.ejpb.2006.11.009
  20. J.H. Park, Y. Sun, Y.E. Goldman, R.J. Composto, Macromolecules 42 (2009) 1017. https://doi.org/10.1021/ma8023393
  21. R. Nistico, D. Scalarone, G. Magnacca, Microporous Mesoporous Mater. 190 (2014) 208. https://doi.org/10.1016/j.micromeso.2014.02.012
  22. S. Wamg, P. Tangvijitsakul, Z. Qiang, S.M. Bhaway, K. Lin, K.A. Cavicchi, M.D. Soucek, B.D. Vogt, Langmuir 32 (2016) 4077. https://doi.org/10.1021/acs.langmuir.6b01026
  23. O.V. Gorbunova, O.N. Baklanova, T.I. Gulyaeva, M.V. Trenikhin, V.A. Drozdov, Microporous Mesoporous Mater. 190 (2014) 146. https://doi.org/10.1016/j.micromeso.2014.02.013
  24. V. Cauda, A. Schlossbauer, T. Bein, Microporous Mesoporous Mater. 132 (2010) 60. https://doi.org/10.1016/j.micromeso.2009.11.015
  25. H. Xu, F. Yan, E.E. Monson, R. Kopelman, J. Biomed. Mater. Res. A 66 (2003) 870.
  26. M. Marini, M. Toselli, S. Borsacchi, G. Mollica, M. Geppi, F. Pilati, J. Polym. Sci. A Polym. Chem. 46 (2008) 1699. https://doi.org/10.1002/pola.22511
  27. H.D. Bijsterbosch, M.A. Cohen Stuart, G.J. Fleer, J. Colloid Interface Sci. 210 (1999) 37. https://doi.org/10.1006/jcis.1998.5946
  28. B. Vincent, Chem. Eng. Sci. 48 (1993) 429. https://doi.org/10.1016/0009-2509(93)80028-O
  29. D.H. Napper, J. Colloid Interface Sci. 58 (1997) 390.
  30. M. Khiterer, K. Shea, Makromol. Chem. 185 (2006) 2609.
  31. L. Zhao, D.A. Loy, K.J. Shea, J. Am. Chem. Soc. 128 (2006) 14250. https://doi.org/10.1021/ja066047n
  32. L.C. Hu, M. Khiterer, S.J. Huang, J.C.C. Chan, J.R. Davey, K.J. Shea, Chem. Mater. 22 (2010) 5244. https://doi.org/10.1021/cm101243m
  33. J.Y. Kim, J. Wainaina, J.S. Na, J. Ind. Eng. Chem. 17 (2011) 681. https://doi.org/10.1016/j.jiec.2010.10.013
  34. J.Y. Kim, N.H. Kim, Appl. Chem. Eng. 27 (2016) 26. https://doi.org/10.14478/ace.2015.1094
  35. S.K. Cho, N.H. Kim, S.J. Lee, H.S. Lee, J.Y. Kim, J.W. Choi, Chemosphere 156 (2016) 302. https://doi.org/10.1016/j.chemosphere.2016.05.004
  36. M.R. Van Landingham, J. Res. Natl. Inst. Stand. Technol. 108 (2003) 249. https://doi.org/10.6028/jres.108.024
  37. J.L. Hay, G.M. Pharr, Instrumented indentation testing, ASM Handbook, Mechanical Testing and Evaluation, vol. 8, ASM International, USA, 2000 p. 232.
  38. M.S. Um, D.S. Ham, S.K. Cho, S.J. Lee, K.J. Kim, J.H. Lee, S.H. Choa, H.W. Jung, W. Choi, J. Prog. Org. Coat. 97 (2016) 166. https://doi.org/10.1016/j.porgcoat.2016.04.007
  39. W.C. Oliver, G.M. Pharr, J. Mater. Res. 7 (1992) 1564. https://doi.org/10.1557/JMR.1992.1564
  40. C. Chaibundit, N. Ricardo, F. Costa, M. Wong, D. Hermida-Merino, J. Rodriguez-Perez, I. Hamley, S.G. Yeates, C. Booth, Langmuir 24 (2008) 12260. https://doi.org/10.1021/la8022425
  41. S. Alexander, T. Cosgrove, W.M. de Vos, T.C. Castle, S.W. Prescott, Langmuir 30 (2014) 5747. https://doi.org/10.1021/la500961n
  42. R. Cademartiri, M.A. Brook, R. Pelton, J.D. Brennan, J. Mater. Chem. 19 (2009) 1583. https://doi.org/10.1039/b815447c
  43. B. Tang, C. Wu, M. Qiu, X. Zhang, S. Zhang, Mater. Chem. Phys. 144 (2014) 162. https://doi.org/10.1016/j.matchemphys.2013.12.036
  44. M. Irfan Khan, K. Azizli, S. Sufian, Z. Man, A. Sada Khan, RSC Adv. 5 (2015) 20788. https://doi.org/10.1039/C4RA15922E
  45. K. Kuraoka, T. Ueda, M. Sato, T. Okamoto, T. Yazawa, J. Mater. Sci. 40 (2005) 3577. https://doi.org/10.1007/s10853-005-2880-0
  46. F.J. Arriagada, K. Osseo-Asare, J. Colloid Interface Sci. 211 (1999) 210. https://doi.org/10.1006/jcis.1998.5985
  47. Y. Wan, Y. Shi, D. Zhao, Chem. Commun. 897 (2007) 897.
  48. G. Engelhardt, D. Michel, High Resolution Solid-State NMR of Silicates and Zeolites, John Wiley & Sons, New York, 1987.
  49. P.M. Henrichs, V.A. Nicely, Macromolecules 23 (1990) 3193. https://doi.org/10.1021/ma00214a027
  50. H. Sun, S.J. Mumby, J.R. Maple, A.T. Hagler, J. Am. Chem. Soc. 116 (1994) 2978. https://doi.org/10.1021/ja00086a030
  51. Y.G. Hsu, I.L. Chiang, J.F. Lo, J. Appl. Polym. Sci. 78 (2000) 1179. https://doi.org/10.1002/1097-4628(20001107)78:6<1179::AID-APP20>3.0.CO;2-T
  52. R. Ulrich, J.W. Zwanziger, S.M. De Paul, A. Reiche, H. Leuninger, H.W. Spiess, U. Weisner, Adv. Mater. 14 (2002) 1134. https://doi.org/10.1002/1521-4095(20020816)14:16<1134::AID-ADMA1134>3.0.CO;2-K
  53. S. Jana, M.A. Lim, I.C. Baek, C.H. Kim, S.I. Seok, Mater. Chem. Phys. 112 (2008) 1008. https://doi.org/10.1016/j.matchemphys.2008.06.070

Cited by

  1. Sol–Gel-Processed Organic–Inorganic Hybrid for Flexible Conductive Substrates Based on Gravure-Printed Silver Nanowires and Graphene vol.11, pp.1, 2018, https://doi.org/10.3390/polym11010158
  2. A critical role of amphiphilic polymers in organic-inorganic hybrid sol-gel derived gate dielectrics for flexible organic thin-film transistors vol.7, pp.37, 2018, https://doi.org/10.1039/c8tc06625f
  3. Development of perfluorosulfonic acid polymer‐based hybrid composite membrane with alkoxysilane functionalized polymer for vanadium redox flow battery vol.44, pp.3, 2018, https://doi.org/10.1002/er.5053
  4. Solution-Processed Flexible Gas Barrier Films for Organic Field-Effect Transistors vol.28, pp.8, 2020, https://doi.org/10.1007/s13233-020-8098-9
  5. Advanced Side-Impermeability Characteristics of Fluorinated Organic-Inorganic Nanohybrid Materials for Thin Film Encapsulation vol.29, pp.4, 2018, https://doi.org/10.1007/s13233-021-9035-2