Browse > Article
http://dx.doi.org/10.14478/ace.2020.1044

Recent Progress in Inorganic Nanoparticles with Enzyme-Mimetic Activities and Their Applications to Diagnosis and Therapy  

Lee, Junsoo (Department of Chemical Engineering, Myongji University)
Kim, Taeyeon (Department of Chemical Engineering, Myongji University)
Kim, Bong-Geun (Department of Chemical Engineering, Myongji University)
Na, Hyon Bin (Department of Chemical Engineering, Myongji University)
Publication Information
Applied Chemistry for Engineering / v.31, no.4, 2020 , pp. 352-359 More about this Journal
Abstract
Inorganic nanoparticles have been actively applied to the bio-medical field by utilizing their physical properties derived from the nanometer size regime, such as optical and magnetic properties. In recent years, diagnostic detection methods have been developed by employing chemical activity, particularly enzyme-mimetic activities, as well as physical properties of inorganic nanoparticles. After the initial study of verifying the enzyme-mimetic activities, the scope of research has been expanded to the direct use of therapeutic effects with active control of activity through understanding of the catalytic mechanism. This review summarizes recent research works on the active control of the enzyme-mimetic activities and newly demonstrated applications on the diagnosis and treatment of diseases, focusing on inorganic nanoparticles, so-called "nanozyme". It is expected that the enzyme-mimetic activity of inorganic nanoparticles will be combined with their inherent physical properties, leading to the development of new diagnostic and therapeutic methods.
Keywords
Inorganic nanoparticles; Nanozyme; Enzyme-mimic; Diagnosis; Therapy;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 M. Gharib, A. Kornowski, H. Noei, W. J. Parak, and I. Chakraborty, Protein-protected porous bimetallic AgPt nanoparticles with pH-switchable peroxidase/catalase-mimicking activity, ACS Mater. Lett., 1, 310-319 (2019).   DOI
2 X. Zhang, G. Han, R. Zhang, Z. Huang, H. Shen, P. Su, J. Song, and Y. Yang, $Co_2V_2O_7$ particles with intrinsic multienzyme mimetic activities as an effective bioplatform for ultrasensitive fluorometric and colorimetric biosensing, ACS Appl. Bio Mater., 3, 1469-1480 (2020).   DOI
3 X. Hu, F. Li, F. Xia, X. Guo, N. Wang, L. Liang, B. Yang, K. Fan, X. Yan, and D. Ling, Biodegradation-mediated enzymatic activity-tunable molybdenum oxide nanourchins for tumor-specific cascade catalytic therapy, J. Am. Chem. Soc., 142, 1636-1644 (2019).   DOI
4 S. Kang, Y. Gil, D. Min, and H. Jang, Nonrecurring circuit nanozymatic enhancement of hypoxic pancreatic cancer phototherapy using speckled Ru-Te hollow nanorods, ACS Nano, 14, 4383-4394 (2020).   DOI
5 S. J. Im, S. Y. Lee, and Y. I. Park, Recent trends in photodynamic therapy using upconversion nanoparticles, Appl. Chem. Eng., 29, 138-146 (2018).   DOI
6 D. S. Kim and B. G. Choi, Preparation of surface functionalized gold nanoparticles and their lateral flow immunoassay applications, Appl. Chem. Eng., 29, 97-102 (2018).   DOI
7 C. B. Murray, C. R. Kagan, and M. G. Bawendi, Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies, Annu. Rev. Mater. Sci., 30, 545-610 (2000).   DOI
8 D. Kim, J. Kim, Y. I. Park, N. Lee, and T. Hyeon, Recent development of inorganic nanoparticles for biomedical imaging, ACS Cent. Sci., 4, 324-336 (2018).   DOI
9 K. D. Wegner and N. Hildebrandt, Quantum dots: Bright and versatile in vitro and in vivo fluorescence imaging biosensors, Chem. Soc. Rev., 44, 4792-4834 (2015).   DOI
10 H. Fatima and K. Kim, Magnetic nanoparticles for bioseparation, Korean J. Chem. Eng., 34, 589-599 (2017).   DOI
11 N. Lee, D. Yoo, D. Ling, M. H. Cho, T. Hyeon, and J. Cheon, Iron oxide based nanoparticles for multimodal imaging and magnetoresponsive therapy, Chem. Rev., 115, 10637-10689 (2015).   DOI
12 H. Wei and E. Wang, Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes, Chem. Soc. Rev., 42, 6060-6093 (2013).   DOI
13 Mo. Dieguez, J.-E. Backvall, and O. Pamies, Artificial Metalloenzymes and Metallodnazymes in Catalysis: From Design to Applications, Wiley-VCH Verlag GmbH & Co., Weinheim, Germany (2018).
14 H. Y. Shin, T. J. Park, and M. I. Kim, Recent research trends and future prospects in nanozymes, J. Nanomater., 2015, 756278 (2015).
15 J. B. Sumner, The isolation and crystallization of the enzyme urease preliminary paper, J. Biol. Chem., 69, 435-441 (1926).   DOI
16 A. Balasubramanian and K. Ponnuraj, Crystal structure of the first plant urease from jack bean: 83 years of journey from its first crystal to molecular structure, J. Mol. Biol., 400, 274-283 (2010).   DOI
17 L. Gao, J. Zhuang, L. Nie, J. Zhang, Y. Zhang, N. Gu, T. Wang, J. Feng, D. Yang, and S. Perrett, Intrinsic peroxidase-like activity of ferromagnetic nanoparticles, Nat. Nanotechnol., 2, 577-583 (2007).   DOI
18 R. W. Tarnuzzer, J. Colon, S. Patil, and S. Seal, Vacancy engineered ceria nanostructures for protection from radiation-induced cellular damage, Nano Lett., 5, 2573-2577 (2005).   DOI
19 L. Gao, K. Fan, and X. Yan, Iron oxide nanozyme: A multifunctional enzyme mimetic for biomedical applications, Theranostics, 7, 3207-3227 (2017).   DOI
20 H. Y. Shin, B. Kim, S. Cho, J. Lee, H. B. Na, and M. I. Kim, Visual determination of hydrogen peroxide and glucose by exploiting the peroxidase-like activity of magnetic nanoparticles functionalized with a poly (ethylene glycol) derivative, Microchim. Acta., 184, 2115-2122 (2017).   DOI
21 W. Li, J. Wang, J. Zhu, and Y. Zheng, $Co_3O_4$ nanocrystals as an efficient catalase mimic for the colorimetric detection of glutathione, J. Mater. Chem. B, 6, 6858-6864 (2018).   DOI
22 W. Lu, J. Zhang, N. Li, Z. You, Z. Feng, V. Natarajan, J. Chen, and J. Zhan, $Co_3O_4$@$\beta$-cyclodextrin with synergistic peroxidase-mimicking performance as a signal magnification approach for colorimetric determination of ascorbic acid, Sens. Actuators B: Chem., 303, 127106 (2020).   DOI
23 C. Fan, J. Liu, H. Zhao, L. Li, M. Liu, J. Gao, and L. Ma, Molecular imprinting on PtPd nanoflowers for selective recognition and determination of hydrogen peroxide and glucose, RSC Adv., 9, 33678-33683 (2019).   DOI
24 W. Cao, J. Lin, F. Muhammad, Q. Wang, X. Wang, Z. Lou, and H. Wei, Porous ruthenium selenide nanoparticle as a peroxidase mimic for glucose bioassay, J. Anal. Test., 3, 253-259 (2019).   DOI
25 C. Song, W. Ding, W. Zhao, H. Liu, J. Wang, Y. Yao, and C. Yao, High peroxidase-like activity realized by facile synthesis of $FeS_2$ nanoparticles for sensitive colorimetric detection of $H_2O_2$ and glutathione, Biosens. Bioelectron., 151, 111983 (2020).   DOI
26 L. Hu, H. Liao, L. Feng, M. Wang, and W. Fu, Accelerating the peroxidase-like activity of gold nanoclusters at neutral pH for colorimetric detection of heparin and heparinase activity, Anal. Chem., 90, 6247-6252 (2018).   DOI
27 S. Kim, M. Kim, S. Jung, K. Kwon, J. Park, S. Kim, I. Kwon, and G. Tae, Co-delivery of therapeutic protein and catalase-mimic nanoparticle using a biocompatible nanocarrier for enhanced therapeutic effect, J. Control. Release, 309, 181-189 (2019).   DOI
28 C. K. Kim, T. Kim, I.-Y. Choi, M. Soh, D. Kim, Y.-J. Kim, H. Jang, H.-S. Yang, J. Y. Kim, H.-K. Park, S. P. Park, S. Park, T. Yu, B.-W. Yoon, S.-H. Lee, and T. Hyeon, Ceria nanoparticles that can protect against ischemic stroke, Angew. Chem. Int. Ed., 51, 11039-11043 (2012).   DOI
29 R. Singh and S. Singh, Redox-dependent catalase mimetic cerium oxide-based nanozyme protect human hepatic cells from 3-AT induced acatalasemia, Colloids Surf. B, 175, 625-635 (2019).   DOI
30 M. Y. Kim and J. Kim, Chitosan microgels embedded with catalase nanozyme-loaded mesocellular silica foam for glucose-responsive drug delivery, ACS Biomater. Sci. Eng., 3, 572-578 (2017).   DOI
31 D. Sun, X. Pang, Y. Cheng, J. Ming, S. Xiang, C. Zhang, P. Lv, C. Chu, X. Chen, and G. Liu, Ultrasound-switchable nanozyme augments sonodynamic therapy against multidrug-resistant bacterial infection, ACS Nano, 14, 2063-2076 (2020).   DOI
32 M. Chen, Z. Wang, J. Shu, X. Jiang, W. Wang, Z. Shi, and Y. Lin, Mimicking a natural enzyme system: Cytochrome c oxidase-like activity of $Cu_2O$ nanoparticles by receiving electrons from cytochromec, Inorg. Chem., 56, 9400-9403 (2017).   DOI
33 S. He, L. Yang, X. Lin, L. Chen, H. Peng, H. Deng, X. Xia, and W. Chen, Heparin-platinum nanozymes with enhanced oxidase-like activity for the colorimetric sensing of isoniazid, Talanta, 211, 120707 (2020).   DOI
34 S. Bhagat, N. S. Vallabani, V. Shutthanandan, M. Bowden, A. S. Karakoti, and S. Singh, Gold core/ceria shell-based redox active nanozyme mimicking the biological multienzyme complex phenomenon, J. Colloid Interface Sci., 513, 831-842 (2018).   DOI
35 X. Xu, L. Wang, X. Zou, S. Wu, J. Pan, X. Li, and X. Niu, Highly sensitive colorimetric detection of arsenite based on reassembly- induced oxidase-mimicking activity inhibition of dithiothreitol-capped Pd nanozyme, Sens. Actuators B: Chem., 298, 126876 (2019).   DOI
36 H. Cheng, S. Lin, F. Muhammad, Y. Lin, and H. Wei, Rationally modulate the oxidase-like activity of nanoceria for self-regulated bioassays, ACS Sens., 1, 1336-1343 (2016).   DOI
37 H. Yang, X. Wu, L. Su, Y. Ma, N.J. Graham, and W. Yu, The F-N-C oxidase-like nanozyme used for catalytic oxidation of NOM in surface water, Water Res., 171, 115491 (2020).   DOI