• 제목/요약/키워드: Injective module

검색결과 102건 처리시간 0.024초

Some Results on Simple-Direct-Injective Modules

  • Derya Keskin Tutuncu;Rachid Tribak
    • Kyungpook Mathematical Journal
    • /
    • 제63권4호
    • /
    • pp.521-537
    • /
    • 2023
  • A module M is called a simple-direct-injective module if, whenever A and B are simple submodules of M with A ≅ B and B is a direct summand of M, then A is a direct summand of M. Some new characterizations of these modules are proved. The structure of simple-direct-injective modules over a commutative Dedekind domain is fully determined. Also, some relevant counterexamples are indicated to show that a left simple-direct-injective ring need not be right simple-direct-injective.

ALMOST PRINCIPALLY SMALL INJECTIVE RINGS

  • Xiang, Yueming
    • 대한수학회지
    • /
    • 제48권6호
    • /
    • pp.1189-1201
    • /
    • 2011
  • Let R be a ring and M a right R-module, S = $End_R$(M). The module M is called almost principally small injective (or APS-injective for short) if, for any a ${\in}$ J(R), there exists an S-submodule $X_a$ of M such that $l_Mr_R$(a) = Ma $Ma{\bigoplus}X_a$ as left S-modules. If $R_R$ is a APS-injective module, then we call R a right APS-injective ring. We develop, in this paper, APS-injective rings as a generalization of PS-injective rings and AP-injective rings. Many examples of APS-injective rings are listed. We also extend some results on PS-injective rings and AP-injective rings to APS-injective rings.

INJECTIVE PROPERTY RELATIVE TO NONSINGULAR EXACT SEQUENCES

  • Arabi-Kakavand, Marzieh;Asgari, Shadi;Tolooei, Yaser
    • 대한수학회보
    • /
    • 제54권2호
    • /
    • pp.559-571
    • /
    • 2017
  • We investigate modules M having the injective property relative to nonsingular modules. Such modules are called "$\mathcal{N}$-injective modules". It is shown that M is an $\mathcal{N}$-injective R-module if and only if the annihilator of $Z_2(R_R)$ in M is equal to the annihilator of $Z_2(R_R)$ in E(M). Every $\mathcal{N}$-injective R-module is injective precisely when R is a right nonsingular ring. We prove that the endomorphism ring of an $\mathcal{N}$-injective module has a von Neumann regular factor ring. Every (finitely generated, cyclic, free) R-module is $\mathcal{N}$-injective, if and only if $R^{(\mathbb{N})}$ is $\mathcal{N}$-injective, if and only if R is right t-semisimple. The $\mathcal{N}$-injective property is characterized for right extending rings, semilocal rings and rings of finite reduced rank. Using the $\mathcal{N}$-injective property, we determine the rings whose all nonsingular cyclic modules are injective.

ON SEMI-REGULAR INJECTIVE MODULES AND STRONG DEDEKIND RINGS

  • Renchun Qu
    • 대한수학회보
    • /
    • 제60권4호
    • /
    • pp.1071-1083
    • /
    • 2023
  • The main motivation of this paper is to introduce and study the notions of strong Dedekind rings and semi-regular injective modules. Specifically, a ring R is called strong Dedekind if every semi-regular ideal is Q0-invertible, and an R-module E is called a semi-regular injective module provided Ext1R(T, E) = 0 for every 𝓠-torsion module T. In this paper, we first characterize rings over which all semi-regular injective modules are injective, and then study the semi-regular injective envelopes of R-modules. Moreover, we introduce and study the semi-regular global dimensions sr-gl.dim(R) of commutative rings R. Finally, we obtain that a ring R is a DQ-ring if and only if sr-gl.dim(R) = 0, and a ring R is a strong Dedekind ring if and only if sr-gl.dim(R) ≤ 1, if and only if any semi-regular ideal is projective. Besides, we show that the semi-regular dimensions of strong Dedekind rings are at most one.

HOM AND EXT FUNCTORS OF GENERALIZED INVERSE POLYNOMIAL MODULES

  • Han, Chang-Woo;Park, Sang-Won;Cho, Eun-Ha
    • East Asian mathematical journal
    • /
    • 제16권1호
    • /
    • pp.111-123
    • /
    • 2000
  • Northcott and McKerrow proved that if R is a left noetherian ring and E is an injective left R-module, then $E[x^{-1}]$ is an injective left R[xl-module. Park generalize Northcott and McKerrow's result so that if R is a left noetherian ring and E is an injective left R-module, then $E[x^{-S}]$ is an injective left $R[x^s]$-module, where S is a submonoid of N(N is the set of all natural numbers). In this paper we show $$Hom_{R[x^S]}(M[x^{-S}],\;N[x^{-S}]){\cong}Hom_R(M,\;N)[[x^S]]$$ and using the above result and this isomorphism, finally we show that $$Ext^i_{R[x^S]}(M[x^{-S}],\;N[x^{-S}]){\cong}Ext^i_R(M,\;N)[[x^S]]$$.

  • PDF

GALOIS GROUPS OF MODULES AND INVERSE POLYNOMIAL MODULES

  • Park, Sang-Won;Jeong, Jin-Sun
    • 대한수학회보
    • /
    • 제44권2호
    • /
    • pp.225-231
    • /
    • 2007
  • Given an injective envelope E of a left R-module M, there is an associative Galois group Gal$({\phi})$. Let R be a left noetherian ring and E be an injective envelope of M, then there is an injective envelope $E[x^{-1}]$ of an inverse polynomial module $M[x^{-1}]$ as a left R[x]-module and we can define an associative Galois group Gal$({\phi}[x^{-1}])$. In this paper we describe the relations between Gal$({\phi})$ and Gal$({\phi}[x^{-1}])$. Then we extend the Galois group of inverse polynomial module and can get Gal$({\phi}[x^{-s}])$, where S is a submonoid of $\mathbb{N}$ (the set of all natural numbers).

GALOIS GROUP OF GENERALIZED INVERSE POLYNOMIAL MODULES

  • Park, Sang-Won;Jeong, Jin-Sun
    • East Asian mathematical journal
    • /
    • 제24권2호
    • /
    • pp.139-144
    • /
    • 2008
  • Given an injective envelope E of a left R-module M, there is an associative Galois group Gal($\phi$). Let R be a left noetherian ring and E be an injective envelope of M, then there is an injective envelope E[$x^{-1}$] of an inverse polynomial module M[$x^{-1}$] as a left R[x]-module and we can define an associative Galois group Gal(${\phi}[x^{-1}]$). In this paper we extend the Galois group of inverse polynomial module and can get Gal(${\phi}[x^{-s}]$), where S is a submonoid of $\mathds{N}$ (the set of all natural numbers).

  • PDF

PROJECTIVE AND INJECTIVE PROPERTIES OF REPRESENTATIONS OF A QUIVER Q = • → • → •

  • Park, Sangwon;Han, Juncheol
    • Korean Journal of Mathematics
    • /
    • 제17권3호
    • /
    • pp.271-281
    • /
    • 2009
  • We define injective and projective representations of a quiver $Q={\bullet}{\rightarrow}{\bullet}{\rightarrow}{\bullet}$. Then we show that a representation $M_1\longrightarrow[50]^{f1}M_2\longrightarrow[50]^{f2}M_3$ of a quiver $Q={\bullet}{\rightarrow}{\bullet}{\rightarrow}{\bullet}$ is projective if and only if each $M_1,\;M_2,\;M_3$ is projective left R-module and $f_1(M_1)$ is a summand of $M_2$ and $f_2(M_2)$ is a summand of $M_3$. And we show that a representation $M_1\longrightarrow[50]^{f1}M_2\longrightarrow[50]^{f2}M_3$ of a quiver $Q={\bullet}{\rightarrow}{\bullet}{\rightarrow}{\bullet}$ is injective if and only if each $M_1,\;M_2,\;M_3$ is injective left R-module and $ker(f_1)$ is a summand of $M_1$ and $ker(f_2)$ is a summand of $M_2$.

  • PDF