KYUNGPOOK Math. J. 63(2023), 521-537 https://doi.org/10.5666/KMJ.2023.63.4.521 pISSN 1225-6951 eISSN 0454-8124 © Kyungpook Mathematical Journal

Some Results on Simple-Direct-Injective Modules

Derya Keskin Tütüncü

Department of Mathematics, Hacettepe University, 06800 Beytepe, Ankara, Turkey e-mail: keskin@hacettepe.edu.tr

RACHID TRIBAK*

Centre Régional des Métiers de l'Education et de la Formation (CRMEF-TTH)-Tanger, Avenue My Abdelaziz, B.P. 3117, Souani, Tangier, Morocco

 $e ext{-}mail: tribak12@yahoo.com}$

ABSTRACT. A module M is called a simple-direct-injective module if, whenever A and B are simple submodules of M with $A \cong B$ and B is a direct summand of M, then A is a direct summand of M. Some new characterizations of these modules are proved. The structure of simple-direct-injective modules over a commutative Dedekind domain is fully determined. Also, some relevant counterexamples are indicated to show that a left simple-direct-injective ring need not be right simple-direct-injective.

1. Preliminaries and Introduction

Throughout, all rings R are associative with identity and all modules are unitary right R-modules. For a module M, we denote by $\operatorname{Rad}(M)$, $\operatorname{Soc}(M)$ and E(M) the Jacobson radical, the socle and the injective hull of M, respectively. We write $N\subseteq M$ if N is a subset of M, and $N\le M$ if N is a submodule of M. The notation $N\le_d M$ means that N is a direct summand of M. For two modules X,Y over a ring R, the set of R-homomorphisms from X to Y is denoted by $\operatorname{Hom}_R(X,Y)$. For a ring R, we denote by J(R) the Jacobson radical of R. Let M be a module over a ring R. Recall that M is called a C2-module if every submodule of M which is isomorphic to a direct summand is itself a direct summand of M. In addition, the module M is said to be a C3-module if the sum of any two direct summands of M with zero intersection is again a direct summand of M. It was shown in [4, Proposition 2.1] that the "simple" versions of C2 and C3-modules coincide. Camillo et al. [4] called these modules S-modules S-modules. Then S-modules are unitary right and S-modules S-modules are unitary respectively.

Received July 1, 2022; accepted September 8, 2022.

2020 Mathematics Subject Classification: 16D10, 16D60, 16D80.

Key words and phrases: Dedekind domain, Simple-Direct-Injective module, Left (Right) simple-direct-injective ring.

^{*} Corresponding Author.

module if, whenever A and B are simple submodules of M with $A \cong B$ and B a direct summand of M, then A is a direct summand of M. Equivalently, for any simple direct summands A and B of M with $A \cap B = 0$, $A \oplus B$ is a direct summand of M. A number of examples of simple-direct-injective modules appeared in some research papers. Among others, note that every indecomposable right R-module is simple-direct-injective by [4, Example 2.3(1)]. Moreover, according to [4, Example 2.3(2)], every cyclic R-module is simple-direct-injective if R is a commutative ring. It is clear that every R-module M which has no simple direct summands is simple-direct-injective. For example, we can take a module M with $M = \operatorname{Rad}(M)$. Also, if a module $M = M_1 \oplus M_2$ is a direct sum of two nonsimple indecomposable R-modules M_1 and M_2 , then M has no simple direct summands (see [8, Example 2.6(1)]). Next, we present some known characterizations of various rings in terms of simple-direct-injective modules.

- 1. Given a ring R, the right R-module R_R is simple-direct-injective if and only if every projective right R-module is simple-direct-injective ([4, Corollary 2.15]).
- 2. A ring R is an artinian serial ring with $J(R)^2 = 0$ if and only if every simple-direct-injective right R-module is a C3-module (a quasi-injective module) ([4, Theorem 3.4]).
- 3. A ring R is semisimple if and only if every simple-direct-injective right R-module is injective ([4, Corollary 3.5]).
- 4. A ring R is a right V-ring if and only if every 2-generated (finitely cogenerated) right R-module is simple-direct-injective ([4, Proposition 4.1]).
- 5. A von Neumann regular ring R is a right V-ring if and only if every cyclic right R-module is simple-direct-injective ([4, Theorem 4.4]).

Recently, Büyükaşık et al. [3] gave a complete characterization of simple-directinjective abelian groups. They proved in [3, Theorem 2] that an abelian group M is simple-direct-injective if and only if for each prime number p, the p-primary component $T_p(M)$ is semisimple or $Soc(T_p(M)) \subseteq Rad(T_p(M))$.

The motivation of this paper comes from these three works: [3], [4] and [8]. Our goals are to extend the preceding characterization of simple-direct-injective abelian groups to modules over commutative Dedekind domains, investigate some properties of simple-direct-injective modules and rings and construct some useful examples.

In Section 2, we present some easy examples. In Section 3, we obtain several equivalent conditions for modules to being simple-direct-injective and give some properties of this type of modules. Among others, we prove that a module M is simple-direct-injective if and only if for every pair of idempotents $e, f \in S = \operatorname{End}_R(M)$ such that e(M) and f(M) are simple and $e(M) \cap f(M) = 0$, there exist orthogonal idempotents $g, h \in S$ such that eS = gS and fS = hS. It is also shown that a module M is simple-direct-injective if and only if for every submodule K of M such that $K = K_1 \oplus K_2$, K_1 and K_2 are simple (perspective) direct summands

of M, every homomorphism $\varphi: K \to M$ can be extended to an endomorphism $\theta: M \to M$. In addition, we prove that for an R-module $M = \bigoplus_{i \in I} M_i$ which is a direct sum of submodules M_i $(i \in I)$ such that for every direct summand X of M, $X = \bigoplus_{i \in I} (X \cap M_i)$ (for example, if $\operatorname{Hom}_R(M_i, M_j) = 0$, for all distinct $i, j \in I$), then M is simple-direct-injective if and only if M_i is simple-direct-injective for all $i \in I$. This result is useful to investigate simple-direct-injective modules over commutative Dedekind domains. In Section 4, we fully characterize simple-direct-injective modules over commutative Dedekind domains. In particular, we prove an extension of [3, Theorem 2] to modules over commutative Dedekind domains. In Section 5, we investigate simple-direct-injective rings. A ring R is called left (right) simple-direct-injective if the left (right) R-module R R R is simple-direct-injective. We show that being a simple-direct-injective ring is not left-right symmetric. Moreover, we prove that the class of left (right) simple-direct-injective rings is closed under direct products. Some necessary conditions for the endomorphism ring of a module to be right simple-direct-injective are investigated.

2. Some Examples

In this section, we provide some other examples of simple-direct-injective modules. It is well known that a simple submodule of a module M is either small in M or a direct summand of M. This clearly implies that any module M with $\operatorname{Soc}(M) \cap \operatorname{Rad}(M) = 0$ is simple-direct-injective since all simple submodules of M are direct summand. Next, we present an important class of modules satisfying this condition.

Example 2.1. Let R be any ring and let M be a regular right R-module (i.e. every cyclic (finitely generated) submodule of M is a direct summand of M (see [15, Remark 6.1])). Therefore M is a simple-direct-injective module since every simple submodule of M is a direct summand of M. In particular, any projective module over a von Neumann regular ring is simple-direct-injective by [15, Proposition 6.7(4)].

A module M is called *dual Rickart* if for every endomorphism f of M, f(M) is a direct summand of M (see [9] and [11]). It is easily seen that every dual Rickart module is simple-direct-injective, but the converse is not true, in general. For example, the \mathbb{Z} -module \mathbb{Z} is simple-direct-injective but it is not dual Rickart. Now using [9, Theorem 3.2 and Corollary 3.3], we obtain the following two examples of simple-direct-injective modules. For the undefined notions here we refer to [7].

Example 2.2. Let R be a prime right Goldie ring such that R is not right primitive and let an R-module M be a direct sum of a torsion-free divisible submodule X and a torsion semisimple submodule Y. Then M is simple-direct-injective.

Example 2.3. Let R be a prime PI-ring which is not artinian and let an R-module M be a direct sum of a torsion-free divisible submodule X and a torsion semisimple submodule Y. Then M is simple-direct-injective.

It is clear that any module M with $Soc(M) \subseteq Rad(M)$ (for example, Soc(M) = 0 or Rad(M) = M) is simple-direct-injective since every simple submodule of M is small in M.

Example 2.4. Let R be a local right artinian ring which is not semisimple (for example, we can take $R = \mathbb{Z}/p^n\mathbb{Z}$ for some prime number p and some integer $n \geq 2$). Clearly the right R-module R_R has no simple direct summands. Therefore R_R is a simple-direct-injective R-module. Note that $\operatorname{Soc}(R_R) \subseteq \operatorname{Rad}(R_R)$, $\operatorname{Soc}(R_R) \neq 0$ and $\operatorname{Rad}(R_R) \neq R_R$.

It is well known that the notion of simple-direct-injective modules is closed under direct summands. To construct counterexamples showing that the simpledirect-injective property is not inherited by submodules and direct sums, we need the following lemma.

Lemma 2.5. Let M be a module having a simple submodule S such that S is not a direct summand of M (e.g., M is indecomposable with $Soc(M) \neq 0$ and $Soc(M) \neq M$). Then $M \oplus Soc(M)$ is not simple-direct-injective.

Proof. Assume that $M \oplus \operatorname{Soc}(M)$ is simple-direct-injective. Then $M \oplus S$ is simple-direct-injective by [3, Lemma 6]. Now consider the inclusion map $i: S \to M$. By [4, Proposition 2.1], $\operatorname{Im}(i) = S$ is a direct summand of M. This contradicts our assumption. Therefore $M \oplus \operatorname{Soc}(M)$ can not be simple-direct-injective.

Example 2.6. Let a module $M = \bigoplus_{i \in I} M_i$ be a direct sum of indecomposable nonsimple submodules M_i $(i \in I)$ such that $\operatorname{Soc}(M_{i_0}) \neq 0$ for some $i_0 \in I$. Then the module $N = M \oplus M$ is simple-direct-injective since N has no simple direct summands. However, its submodule $M \oplus \operatorname{Soc}(M)$ is not simple-direct-injective by Lemma 2.5. Moreover, note that both M and $\operatorname{Soc}(M)$ are simple-direct-injective. As an explicit example, we can take for M any direct sum of indecomposable nonsimple \mathbb{Z} -modules (e.g., \mathbb{Z} , \mathbb{Q}) such that at least one of them must be isomorphic to $\mathbb{Z}/p^n\mathbb{Z}$ or to $\mathbb{Z}(p^\infty)$ for some prime number p and some integer $n \geq 2$.

3. Some Properties of Simple-Direct-Injective Modules

In this section we provide some new equivalent formulations of being a simple-direct-injective module and establish some properties of this type of modules. In the proof of [4, Proposition 2.1], one can easily see that the implication $(1) \Rightarrow (2)$ is true even if the condition "B is simple" is deleted from the statement (2). We thus get the following proposition. Its proof is given for completeness.

Proposition 3.1. The following conditions are equivalent for a module M:

- (i) M is simple-direct-injective;
- (ii) For any direct summands A and B of M such that A is simple and $A \cap B = 0$, $A \oplus B \leq_d M$.

Proof. (i) \Rightarrow (ii) Let A and B be direct summands of M such that A is simple and $A \cap B = 0$. Then $M = B \oplus B'$ for some submodule B' of M. Let $\pi : B \oplus B' \to B'$ be the projection map with $\text{Ker}\pi = B$. Since $A \cap B = 0$, $\pi(A) \cong A$. Since M is simple-direct-injective, $\pi(A) \leq_d M$. Hence $\pi(A) \leq_d B'$. Therefore there exists a submodule X of B' such that $B' = X \oplus \pi(A)$. It follows that $M = B \oplus B' = \pi(A) \oplus B \oplus X$. Note that $\pi(A) \oplus B = A \oplus B$. Thus $M = A \oplus B \oplus X$ and hence $A \oplus B \leq_d M$.

(ii) \Rightarrow (i) This follows from [4, Proposition 2.1].

Recall that two direct summands A and B of a module M are called *perspective* (see [5]) if $M = A \oplus X = B \oplus X$ for some submodule X of M. Following [1], two idempotents e and f of a ring R are called *perspective* if eR and fR are perspective direct summands of the right R-module R_R (i.e. there exists a right ideal C of R such that $R = eR \oplus C = fR \oplus C$). It was shown in [1, Proposition 2.13] that a module M is simple-direct-injective if and only if for any simple perspective direct summands A, B of M with $A \cap B = 0$, $A \oplus B$ is a direct summand of M. Using the notion of perspectivity of idempotents, we obtain the following characterization of simple-direct-injective modules. The proof of this result is similar to that of [12, Lemma 4.5] (see also [1, Lemma 3.1]).

Theorem 3.2. The following are equivalent for a module M and $S = \operatorname{End}_R(M)$:

- (i) M is simple-direct-injective;
- (ii) For every pair of idempotents $e, f \in S$ such that e(M) and f(M) are simple and $e(M) \cap f(M) = 0$, there exist orthogonal idempotents $g, h \in S$ such that eS = gS and fS = hS;
- (iii) For every pair of perspective idempotents $e, f \in S$ such that e(M) and f(M) are simple and $e(M) \cap f(M) = 0$, there exist orthogonal idempotents $g, h \in S$ such that e(M) = g(M) and f(M) = h(M);
- (iv) For every pair of perspective idempotents $e, f \in S$ such that e(M) and f(M) are simple and $e(M) \cap f(M) = 0$, there exists an idempotent g of S such that e(M) = g(M) and $f(M) \subseteq (1 g)(M)$.
- Proof. (i) \Rightarrow (ii) Suppose that M is simple-direct-injective. Let $e^2 = e, f^2 = f \in S$ with $e(M) \cap f(M) = 0$ such that e(M) and f(M) are simple modules. Then $M = e(M) \oplus f(M) \oplus N$ for some submodule N of M (see Proposition 3.1). Let $g: M \to e(M)$ be the projection map with $\operatorname{Ker} g = f(M) \oplus N$ and $h: M \to f(M)$ be the projection map with $\operatorname{Ker} h = e(M) \oplus N$. Clearly, g(M) = e(M) and h(M) = f(M). Then by [12, Lemma 1.1], gS = eS and hS = fS. It is not hard to see that h and g are orthogonal.
 - (ii) \Rightarrow (iii) Clear by [12, Lemma 1.1].
- (iii) \Rightarrow (iv) Let $e, f \in S$ be perspective idempotents such that e(M) and f(M) are simple and $e(M) \cap f(M) = 0$. By hypothesis, there exist orthogonal idempotents

 $g, h \in S$ such that e(M) = g(M) and f(M) = h(M). Note that $f(M) = h(M) \subseteq g(M)$ $\operatorname{Ker} g = (1 - g)(M)$, as desired.

(iv) \Rightarrow (i) Let A and B be simple perspective direct summands of M with $A \cap B = 0$. Then A = e(M) and B = f(M) for some idempotents e and f of the ring S. By (iv), there exists an idempotent g of S such that A = g(M) and $B \subseteq$ (1-q)(M). Hence B is a direct summand of (1-q)(M). Since $M=q(M)\oplus (1-q)M$, it follows that $A \oplus B$ is a direct summand of M. Now using [1, Proposition 2.13], we conclude that M is a simple-direct-injective module. This completes the proof. \square

The following lemma is needed to prove another characterization of simpledirect-injective modules.

Lemma 3.3. Let A and B be direct summands of a module M such that $A \cap B = 0$. Then the following are equivalent:

- (i) $C = A \oplus B$ is a direct summand of M;
- (ii) Every homomorphism $\varphi: C \to M$ can be extended to an endomorphism $\theta:M\to M$.

Proof. (i) \Rightarrow (ii) This is clear.

(ii) \Rightarrow (i) Note that $M = B \oplus U$ for some submodule U of M. Let $\pi: C \to B$ be the projection of C on B along A and let $\mu: B \to M$ denote the inclusion map. By (ii), the homomorphism $\mu\pi:C\to M$ can be extended to an endomorphism $\theta: M \to M$. Since $\theta(A) = \mu \pi(A) = 0$, we have $A \subseteq \text{Ker}\theta$. Moreover, it is clear that $\theta(y) = y$ for all $y \in B$ and hence $\operatorname{Ker} \theta \cap B = 0$. Now take an element $m \in M$. As $M = B \oplus U$, $\theta(m) = b + u$ for some elements $b \in B$ and $u \in U$. Therefore $\theta(m) = \theta(b) + u$. Thus $u = \theta(m-b)$ and so $m-b \in \theta^{-1}(U)$. This yields $m = (m - b) + b \in \theta^{-1}(U) + B$. It follows that $M = \theta^{-1}(U) + B$.

Now to show that $B \cap \theta^{-1}(U) = 0$, take $a \in B \cap \theta^{-1}(U)$. Then $\theta(a) = a \in$ $U \cap B = 0$. Therefore $M = \theta^{-1}(U) \oplus B$.

Let V be a submodule of M such that $M = A \oplus V$. Then $\theta^{-1}(U) = \theta^{-1}(U) \cap$ $(A \oplus V) = A \oplus (\theta^{-1}(U) \cap V)$ because $A \subseteq \operatorname{Ker} \theta \subseteq \theta^{-1}(U)$. Hence $M = \theta^{-1}(U) \oplus B = \theta^{-1}(U)$ $A \oplus (\theta^{-1}(U) \cap V) \oplus B = C \oplus (\theta^{-1}(U) \cap V)$. This completes the proof.

Proposition 3.4. The following are equivalent for a module M:

- (i) M is simple-direct-injective;
- (ii) For every submodule K of M such that $K = K_1 \oplus K_2$ and K_1 and K_2 are simple perspective direct summands of M, every homomorphism $\varphi: K \to M$ can be extended to an endomorphism $\theta: M \to M$.

Proof. This follows by combining the preceding lemma with [1, Proposition 2.13].

Proposition 3.5. The following are equivalent for a module M:

- (i) M is simple-direct-injective;
- (ii) For every endomorphisms α, β of M such that $\operatorname{Ker}\beta = \operatorname{Ker}\alpha$ and $\operatorname{Ker}\alpha$ is a direct summand of M which is a maximal submodule of M, there exists an endomorphism γ of M such that $\gamma\alpha = \beta$.

Proof. (i) \Rightarrow (ii) Let α and β be endomorphisms of M such that $\operatorname{Ker}\beta = \operatorname{Ker}\alpha$ and $\operatorname{Ker}\alpha$ is a direct summand of M which is a maximal submodule of M. Then $M = \operatorname{Ker}\alpha \oplus L$ for some simple submodule L of M. Clearly $\alpha_{|_L}: L \to M$ is a monomorphism. Since M is simple-direct-injective, it follows that $\alpha(L)$ is a direct summand of M. So there exists a homomorphism $\eta: M \to L$ such that $\eta\alpha_{|_L} = 1_L$. Now since $\operatorname{Ker}\alpha = \operatorname{Ker}\beta$, the homomorphism $\overline{\beta}: M/\operatorname{Ker}\alpha \to M$ given by $m + \operatorname{Ker}\alpha \mapsto \beta(m)$ is well defined. In addition, consider the isomorphism $\overline{\alpha}: L \to M/\operatorname{Ker}\alpha$ defined by $l \mapsto l + \operatorname{Ker}\alpha$ for all $l \in L$. Set $\gamma = \overline{\beta}\overline{\alpha}\eta$. Note that γ is an endomorphism of M. To show that $\gamma\alpha = \beta$, take $m \in M$. Then m = x + l for some $x \in \operatorname{Ker}\alpha$ and $l \in L$. Therefore,

$$\gamma \alpha(m) = \overline{\beta} \overline{\alpha} \eta \alpha(m) = \overline{\beta} \overline{\alpha} \eta \alpha(x+l) = \overline{\beta} \overline{\alpha} \eta \alpha(l) = \overline{\beta} \overline{\alpha}(l) = \overline{\beta}(l + \operatorname{Ker}\alpha) = \overline{\beta}(x+l + \operatorname{Ker}\alpha) = \overline{\beta}(m + \operatorname{Ker}\alpha) = \beta(m).$$

This implies that γ is the desired endomorphism of M.

(ii) \Rightarrow (i) Let K be a simple direct summand of M. Hence $M = K \oplus K'$ for some submodule K' of M. Assume that K is isomorphic to a simple submodule S of M. So there exists an isomorphism $\mu: K \to S$. Consider the endomorphisms φ and θ of M defined respectively by $k+k'\mapsto \mu(k)$ and $k+k'\mapsto k$ for any $k\in K$ and $k'\in K'$. Then $\varphi\theta$ is an endomorphism of M such that $\ker \varphi\theta = \ker \theta = K'$ is a maximal submodule of M. By hypothesis, there exists an endomorphism $\gamma: M \to M$ such that $\gamma \varphi \theta = \theta$. Hence $(\gamma \varphi - 1_M)\theta = 0$. Since θ is an epimorphism, we have $\gamma \varphi = 1_M$. Thus $\operatorname{Im} \varphi = S$ is a direct summand of M (see [2, Lemma 5.1]). Therefore M is a simple-direct-injective module.

Recall that any module M is called *pseudo-N-injective*, if every monomorphism $f: K \to M$, where $K \leq N$, can be extended to a homomorphism from N to M. The next proposition characterizes modules whose submodules are simple-directinjective in terms of the pseudo-injectivity.

Proposition 3.6. The following conditions are equivalent for a module M:

- (i) Every submodule of M is simple-direct-injective;
- (ii) For any submodules A and B of M with B simple and $A \cap B = 0$, B is pseudo-A-injective.

Proof. (i) \Rightarrow (ii) Let A and B be submodules of M such that B is simple and $A \cap B = 0$. Let us show that B is pseudo-A-injective. Let $0 \neq f : X \to B$ be a monomorphism with $X \leq A$. Since B is simple, f is an isomorphism. Now $X \cong B \leq_d A \oplus B$ and B and A are submodules of $A \oplus B$. By hypothesis, $A \oplus B$ is

simple-direct-injective and B is simple. Therefore $X \leq_d A \oplus B$, and hence $X \leq_d A$. Thus f can be extended to A.

(ii) \Rightarrow (i) Let L be a submodule of M. We will show that L is simple-directing injective. For, let $L = A \oplus B$ with B simple and let $f : B \to A$ be a nonzero homomorphism. By hypothesis, B is pseudo-A-injective. Since $B \cong f(B)$, f(B) is pseudo-A-injective. This implies that the identity homomorphism $1_{f(B)} : f(B) \to f(B)$ can be extended to a homomorphism $g : A \to f(B)$. Now $g \circ i = 1_{f(B)}$, where $i : f(B) \to A$ is the inclusion map. Therefore $i(f(B)) = f(B) \leq_d A$. From [4, Proposition 2.1 (1) \Leftrightarrow (3)], it follows that L is simple-direct-injective.

Next, we present some examples of modules satisfying the conditions in the hypothesis of Proposition 3.6.

Example 3.7. (i) Let M be a module such that Soc(M) = 0. Then every submodule of M is simple-direct-injective.

- (ii) Consider the \mathbb{Z} -module $M=\mathbb{Z}(p^{\infty})$, where p is a prime number. It is well known that any nonzero proper submodule of M is isomorphic to $\mathbb{Z}/p^k\mathbb{Z}$ for some integer $k\geq 1$. It follows that every submodule of M is simple-direct-injective.
- (iii) Let R be a commutative principal ideal ring. By [4, Example 2.3(2)], every cyclic R-module is simple-direct-injective. Thus, every submodule of a cyclic R-module is simple-direct-injective.

In the following proposition, we provide sufficient conditions under which a direct sum of simple-direct-injective modules is simple-direct-injective. This result should be contrasted with Lemma 2.5 and Example 2.6.

Proposition 3.8. Let R be any ring and let an R-module $M = \bigoplus_{i \in I} M_i$ be a direct sum of submodules M_i ($i \in I$). Suppose that one of the following conditions is fulfilled:

- (i) For every simple direct summand X of M, $X \subseteq M_i$ for some $i \in I$; or
- (ii) $\operatorname{Hom}_R(M_i, M_j) = 0$ for all distinct $i, j \in I$; or
- (iii) For every direct summand X of M, $X = \bigoplus_{i \in I} (X \cap M_i)$.

Then M is simple-direct-injective if and only if M_i is simple-direct-injective for all $i \in I$.

Proof. If M is simple-direct-injective, then M_i is simple-direct-injective for all $i \in I$ by [3, Lemma 6]. Conversely, assume that each M_i ($i \in I$) is simple-direct-injective.

(i) Let A and B be simple direct summands of M with $A \cap B = 0$. By hypothesis, there exist j and k in I such that $A \subseteq M_j$ and $B \subseteq M_k$. Since A and B are direct summands of M, $A \subseteq_d M_j$ and $B \subseteq_d M_k$. Assume that $j \neq k$. Then clearly $A \oplus B \subseteq_d M_j \oplus M_k$, and hence $A \oplus B \subseteq_d M$. Now assume that j = k. Since M_j is simple-direct-injective, it follows that $A \oplus B$ is a direct summand of M_j and hence it is a direct summand of M. Therefore M is simple-direct-injective by [4, Proposition 2.1].

(iii) This follows from the fact that the condition (iii) implies (i). \Box

The following example shows that the conditions (i), (ii) and (iii) in the hypothesis of Proposition 3.8 are not superfluous.

Example 3.9. Consider the \mathbb{Z} -module $M = \mathbb{Z}/p\mathbb{Z} \oplus \mathbb{Z}(p^{\infty})$, where p is a prime number. By Lemma 2.5, M is not a simple-direct-injective module. Let $0 \neq a \in \mathbb{Z}(p^{\infty})$ with pa = 0 and set $S = (\overline{1}, a)\mathbb{Z}$. It is clear that $S \oplus \mathbb{Z}(p^{\infty}) = M$. On the other hand, $S \nsubseteq \mathbb{Z}/p\mathbb{Z} \oplus 0$ and $S \nsubseteq 0 \oplus \mathbb{Z}(p^{\infty})$.

In the next example, we present another simple-direct-injective module.

Example 3.10. Let $M = M_1 \oplus M_2$ be an R-module such that $\operatorname{Rad}(M_1) = M_1$ and $\operatorname{Rad}(M_2) = 0$. It is clear that M_1 has no simple direct summands. In addition, all simple submodules of M_2 are direct summand. Therefore M_1 and M_2 are simple-direct-injective. Assume that either $\operatorname{Soc}(M_1) = 0$ or $\operatorname{Soc}(M_2) = 0$. Then for any simple submodule S of M, we have either $S \subseteq M_1$ or $S \subseteq M_2$. Using Proposition 3.8, we conclude that M is simple-direct-injective.

Next, we will be concerned with factor modules of simple-direct-injective modules. We begin with a result which characterizes the class of commutative rings over which the class of simple-direct-injective modules is closed under factor modules.

Proposition 3.11. Let R be a right simple-direct-injective ring (for instance, R is commutative). Then the following conditions are equivalent:

- (i) All factor modules of simple-direct-injective R-modules are simple-direct-injective;
- (ii) R is a right V-ring.

Proof. (i) \Rightarrow (ii) By [4, Theorem 2.14], every free right R-module is simple-directinjective. Now the condition (i) implies that every right R-module is simple-directinjective. Thus R is a right V-ring by [4, Proposition 4.1].

(ii)
$$\Rightarrow$$
 (i) This follows from [4, Proposition 4.1].

From the preceding proposition, it follows that any commutative ring R which is not von Neumann regular has a simple-direct-injective R-module M such that M/N is not simple-direct-injective for some submodule N of M. Next, we provide an explicit example.

Example 3.12. Let R be a commutative ring having a maximal ideal \mathfrak{m} such that $\mathfrak{m}^k \neq \mathfrak{m}^{k+1}$ for some integer $k \geq 1$ (for example, we can take a discrete valuation ring with maximal ideal \mathfrak{m}). Consider the R-module $M = R/\mathfrak{m} \oplus R/\mathfrak{m}^{k+1}$. It is easily seen that $0 \neq \mathfrak{m}^k/\mathfrak{m}^{k+1} \subseteq \operatorname{Soc}(R/\mathfrak{m}^{k+1})$. So R/\mathfrak{m}^{k+1} contains a simple submodule S which is isomorphic to $R/\mathfrak{m} \oplus 0$ but $0 \oplus S$ is not a direct summand of M. Therefore M is not simple-direct-injective. On the other hand, it is clear that $M \cong R^{(2)}/(\mathfrak{m} \oplus \mathfrak{m}^{k+1})$. Moreover, since R is commutative, R is simple-direct-injective and so $R^{(2)}$ is a simple-direct-injective R-module by [4, Theorem 2.14].

4. Simple-Direct-Injective Modules over Dedekind Domains

This small section is devoted to the study of simple-direct-injective modules over commutative Dedekind domains.

Let M be a module over a commutative domain R. We denote by T(M) the set of all elements x of M for which $Ann_R(x) \neq 0$. It is well known that T(M) is a submodule of M which is called the *torsion submodule* of M. The module M is said to be a *torsion module* if T(M) = M. If T(M) = 0, the module M is said to be *torsion-free*. We begin by some examples of simple-direct-injective modules over a commutative domain.

Remark 4.1. Let R be a commutative domain with quotient field Q such that $R \neq Q$.

- (i) Since R_R is an indecomposable R-module, it follows that R_R is a simple-direct-injective R-module (see [4, Example 2.3(1)]). Hence, every projective R-module is simple-direct-injective by [4, Corollary 2.15].
- (ii) All torsion-free R-modules are simple-direct-injective since they have no simple submodules.
- (iii) If R is a Dedekind domain, then for any index set I, the R-module $M = (Q/R)^{(I)}$ is simple-direct-injective since M is injective.

Let R be a commutative Dedekind domain with quotient field Q and let M be an R-module. Let $\mathfrak p$ be a nonzero prime ideal of R. The set $T_{\mathfrak p}(M)=\{x\in M\mid x\mathfrak p^k=0 \text{ for some non-negative integer }k\}$ is a submodule of M which is called the $\mathfrak p$ -primary component of M. It is well known that every torsion R-module is a direct sum of its $\mathfrak p$ -primary components. The set of all nonzero prime ideals of R is denoted by $\mathbb P$.

In [3, Theorem 2], the authors characterized simple-direct-injective abelian groups. The next theorem is an extension of this characterization.

Theorem 4.2. Let R be a commutative Dedekind domain. Let \mathbb{P} be the set of all nonzero prime ideals of R. Then the following are equivalent for an R-module M:

- (i) M is simple-direct-injective:
- (ii) T(M) is simple-direct-injective;

- (iii) For every $\mathfrak{p} \in \mathbb{P}$, the \mathfrak{p} -primary component $T_{\mathfrak{p}}(M)$ is simple-direct-injective;
- (iv) For every $\mathfrak{p} \in \mathbb{P}$, $T_{\mathfrak{p}}(M)$ is semisimple or $Soc(T_{\mathfrak{p}}(M)) \subseteq Rad(T_{\mathfrak{p}}(M))$;
- (v) For every $\mathfrak{p} \in \mathbb{P}$, $T_{\mathfrak{p}}(M)$ is semisimple or $T_{\mathfrak{p}}(M)$ has no simple direct summands.

Proof. (i) \Leftrightarrow (ii) This follows from [3, Corollary 5].

- (ii) \Rightarrow (iii) This follows by using [3, Lemma 6] since each $T_{\mathfrak{p}}(M)$ ($\mathfrak{p} \in \mathbb{P}$) is a direct summand of T(M).
 - (iii) \Rightarrow (ii) By Proposition 3.8.
- (iv) \Leftrightarrow (v) This follows from the fact that any simple submodule S of a module M is either small in M or a direct summand of M.
- (iii) \Rightarrow (v) Let $\mathfrak{p} \in \mathbb{P}$. Assume that $T_{\mathfrak{p}}(M)$ has a simple direct summand S but $T_{\mathfrak{p}}(M)$ is not semisimple. Then $S \cong R/\mathfrak{p}$ and $T_{\mathfrak{p}}(M) = S \oplus E$ for some submodule E of $T_{\mathfrak{p}}(M)$. It is clear that E is not semisimple. Therefore there exists $x \in E$ such that $xR \cong R/\mathfrak{p}^n$ for some integer $n \geq 2$. Note that xR is an indecomposable R-module which is not simple. It is easily seen that xR contains a simple submodule S' which is isomorphic to R/\mathfrak{p} . Since $T_{\mathfrak{p}}(M)$ is simple-direct-injective and $S \cong S'$, it follows that S' is a direct summand of $T_{\mathfrak{p}}(M)$ and hence S' is a direct summand of $T_{\mathfrak{p}}(M)$ and hence $T_{\mathfrak{p}}(M)$ is a direct summand of $T_{\mathfrak{p}}(M)$ and hence $T_{\mathfrak{p}}(M)$ is a direct summand of $T_{\mathfrak{p}}(M)$ and hence $T_{\mathfrak{p}}(M)$ is a direct summand of $T_{\mathfrak{p}}(M)$ and hence $T_{\mathfrak{p}}(M)$ is a direct summand of $T_{\mathfrak{p}}(M)$ and hence $T_{\mathfrak{p}}(M)$ is a direct summand of $T_{\mathfrak{p}}(M)$ and hence $T_{\mathfrak{p}}(M)$ is simple-direct summand of $T_{\mathfrak{p}}(M)$ and hence $T_{\mathfrak{p}}(M)$ is simple-direct summand of $T_{\mathfrak{p}}(M)$ and hence $T_{\mathfrak{p}}(M)$ is a direct summand of $T_{\mathfrak{p}}(M)$ and hence $T_{\mathfrak{p}}(M)$ is simple-direct summand of $T_{\mathfrak{p}}(M)$ and hence $T_{\mathfrak{p}}(M)$ is simple-direct summand of $T_{$

$$(v) \Rightarrow (iii)$$
 This is immediate.

Let R be a commutative domain with field of fractions Q. Recall that an R-submodule F of Q is called a *fractional ideal* of R if $rF \subseteq R$ for some nonzero element r of R. As an application of Theorem 4.2, the next corollary characterizes finitely generated simple-direct-injective modules over commutative Dedekind domains.

Corollary 4.3. Let R be a commutative Dedekind domain and let M be a finitely generated R-module. Then M is simple-direct-injective if and only if

$$M \cong (R/\mathfrak{q}_1)^{(m_1)} \oplus \cdots \oplus (R/\mathfrak{q}_s)^{(m_s)} \oplus (R/\mathfrak{p}_1^{n_1}) \oplus \cdots \oplus (R/\mathfrak{p}_t^{n_t}) \oplus I_1 \oplus \cdots \oplus I_k,$$

where k, s and t are non-negative integers, \mathfrak{q}_i $(1 \leq i \leq s)$ and \mathfrak{p}_i $(1 \leq i \leq t)$ are nonzero prime ideals of R such that $\mathfrak{q}_i \neq \mathfrak{p}_j$ for all $(i,j) \in \{1,\ldots,s\} \times \{1,\ldots,t\}$, m_i $(1 \leq i \leq s)$ and n_i $(1 \leq i \leq t)$ are positive integers, and I_j $(1 \leq j \leq k)$ are nonzero fractional ideals of R.

Proof. The necessity follows from [14, Theorem 6.16], Example 3.12 and [3, Lemma 6]. Conversely, suppose that M satisfies the stated conditions. Then clearly,

$$T(M) \cong (R/\mathfrak{q}_1)^{(m_1)} \oplus \cdots \oplus (R/\mathfrak{q}_s)^{(m_s)} \oplus (R/\mathfrak{p}_1^{n_1}) \oplus \cdots \oplus (R/\mathfrak{p}_t^{n_t}).$$

It is easily seen that for each nonzero prime ideal \mathfrak{p} of R, we have either $\operatorname{Soc}(T_{\mathfrak{p}}(M)) = T_{\mathfrak{p}}(M)$ or $\operatorname{Soc}(T_{\mathfrak{p}}(M)) \subseteq \operatorname{Rad}(T_{\mathfrak{p}}(M))$. Thus M is simple-directing time by Theorem 4.2.

Example 4.4. Let R be a commutative Dedekind domain with quotient field Q. Let \mathbb{P} denote the set of all nonzero prime ideals of R.

- (i) Let an R-module $M=M_1\oplus M_2$ be a direct sum of submodules M_1 and M_2 such that M_1 is torsion-free and M_2 is semisimple. Then $T(M)=M_2$. From Theorem 4.2, we infer that M is a simple-direct-injective module.
- (ii) Consider the R-module $M = \prod_{\mathfrak{p} \in \mathbb{P}} R/\mathfrak{p}$. Clearly, $T(M) = \bigoplus_{\mathfrak{p} \in \mathbb{P}} R/\mathfrak{p}$ is simple-direct-injective. Thus M is also simple-direct-injective by Theorem 4.2.

5. Simple-Direct-Injective Rings

A ring R is called *left* (right) simple-direct-injective if the left (right) R-module $_RR$ (R_R) is simple-direct-injective. We begin by providing examples of left (and right) simple-direct-injective rings.

Example 5.1. (i) It is clear that semisimple rings, local rings and von Neumann regular rings are left and right simple-direct-injective.

- (ii) It is clear that a left (right) V-ring is a left (right) simple-direct-injective ring.
- (iii) Recall that a ring R is said to be *left* (right) Kasch if every simple left (right) R-module can be embedded in $_RR$ (R_R). By [13, Proposition 1.46], every left (right) Kasch ring is right (left) simple-direct-injective.

Next, we exhibit some examples to illustrate that the property of being a simpledirect-injective ring is not left-right symmetric.

Example 5.2. (i) Here we are using the ring R given in [10, Examples 8.29(6)]; that is, R is the ring of matrices of the form

$$\gamma = \begin{bmatrix} a & 0 & b & c \\ 0 & a & 0 & d \\ 0 & 0 & a & 0 \\ 0 & 0 & 0 & e \end{bmatrix}$$

over a division ring D. It is shown in [10, Examples 8.29(6)] that $Soc(_RR) = Rad(R)$. Thus the left R-module $_RR$ has no simple direct summands. Therefore R is left simple-direct-injective. On the other hand, let us show that R is not a

is a simple direct summand of R_R . In addition, r_2R is a simple submodule of R_R

which is isomorphic to r_1R . Note that r_2R is not a direct summand of R_R since r_2R contains no nonzero idempotents of R. This proves that the ring R is not right simple-direct-injective.

(ii) Consider the ring $R = \begin{bmatrix} \mathbb{Z}_2 & \mathbb{Z}_2 \\ 0 & \mathbb{Z} \end{bmatrix}$ where $\mathbb{Z}_2 = \mathbb{Z}/2\mathbb{Z}$. Then the set of all idempotents of R is $\left\{ \begin{bmatrix} \overline{0} & \overline{0} \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} \overline{0} & \overline{0} \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} \overline{1} & \overline{0} \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} \overline{1} & \overline{1} \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} \overline{1} & \overline{1} \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} \overline{1} & \overline{0} \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} \overline{1} & \overline{0} \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} \overline{1} & \overline{0} \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} \overline{1} & \overline{0} \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} \overline{0} & \overline{0} \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} \overline{0} & \overline{0} \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} \overline{0} & \overline{0} \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} \overline{0} & \overline{0} \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} \overline{0} & \overline{0} \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} \overline{0} & \overline{0} \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} \overline{0} & \overline{0} \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} \overline{0} & \overline{0} \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} \overline{0} & \overline{0} \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} \overline{0} & \overline{0} \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} \overline{0} & \overline{0} \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} \overline{0} & \overline{0} \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} \overline{0} & \overline{0} \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} \overline{0} & \overline{0} \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} \overline{0} & \overline{0} \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} \overline{0} & \overline{0} \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} \overline{0} & \overline{0} \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} \overline{0} & \overline{0} \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} \overline{0} & \overline{0} \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} \overline{0} & \overline{0} \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} \overline{0} & \overline{0} \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} \overline{0} & \overline{0} \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} \overline{0} & \overline{0} \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} \overline{0} & \overline{0} \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} \overline{0} & \overline{0} \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} \overline{0} & \overline{0} \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} \overline{0} & \overline{0} \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} \overline{0} & \overline{0} \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} \overline{0} & \overline{0} \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} \overline{0} & \overline{0} \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} \overline{0} & \overline{0} \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} \overline{0} & \overline{0} \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} \overline{0} & \overline{0} \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} \overline{0} & \overline{0} \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} \overline{0} & \overline{0} \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} \overline{0} & \overline{0} \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} \overline{0} & \overline{0} \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} \overline{0} & \overline{0} \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} \overline{0} & \overline{0} \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} \overline{0} & \overline{0} \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} \overline{0} & \overline{0} \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} \overline{0} & \overline{0} \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} \overline{0} & \overline{0} \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} \overline{0} & \overline{0} \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} \overline{0} & \overline{0} \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} \overline{0} & \overline{0} \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} \overline{0} & \overline{0} \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} \overline{0} & \overline{0} \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} \overline{0} & \overline{0} \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} \overline{0} & \overline{0} \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} \overline{0} & \overline{0} \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} \overline{0} & \overline{0} \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} \overline{0} & \overline{0} \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} \overline{0} & \overline{0} \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} \overline{0} & \overline{0} \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} \overline{0} & \overline{0} \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} \overline{0} & \overline{0} \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} \overline{0} & \overline{0} \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} \overline{0} & \overline{0} \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} \overline{0} & \overline{0} \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} \overline{0} & \overline{0} \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} \overline{0} & \overline{0} \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} \overline{0} & \overline{0} \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} \overline{0} & \overline{0} \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} \overline{0} & \overline{0} \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} \overline{0} & \overline{0} \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} \overline{0} & \overline{0} \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} \overline{0} & \overline$

Next, we present an example of a ring R which is neither left simple-direct-injective nor right simple-direct-injective. This example shows also that a direct sum of two simple-direct-injective modules need not be simple-direct-injective, in general (see also Example 2.6).

Example 5.3. Let $R = \begin{bmatrix} F & F \\ 0 & F \end{bmatrix}$, where F is a field. Then the set of all idempotents of R is

 $\left\{\begin{bmatrix}0&0\\0&0\end{bmatrix},\begin{bmatrix}0&b\\0&1\end{bmatrix},\begin{bmatrix}1&b\\0&0\end{bmatrix},\begin{bmatrix}1&0\\0&1\end{bmatrix}\mid b\in F\right\}.$

Note that $\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} R = \begin{bmatrix} 0 & 0 \\ 0 & F \end{bmatrix} \cong \begin{bmatrix} 0 & F \\ 0 & 0 \end{bmatrix}$ is a simple right R-module. In addition, $\begin{bmatrix} 0 & 0 \\ 0 & F \end{bmatrix}$ is a direct summand of the right R-module R_R but $\begin{bmatrix} 0 & F \\ 0 & 0 \end{bmatrix}$ is not. This implies that the ring R is not right simple-direct-injective. Similarly, $\begin{bmatrix} 0 & F \\ 0 & 0 \end{bmatrix} \cong R \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} F & 0 \\ 0 & 0 \end{bmatrix}$ is a simple left R-module. Moreover, $\begin{bmatrix} F & 0 \\ 0 & 0 \end{bmatrix}$ is a direct summand of the left R-module R but $\begin{bmatrix} 0 & F \\ 0 & 0 \end{bmatrix}$ is not. Therefore R is not a left simple-direct-injective ring.

On the other hand, note that $R_R = \begin{bmatrix} 0 & 0 \\ 0 & F \end{bmatrix} \oplus \begin{bmatrix} F & F \\ 0 & 0 \end{bmatrix}$. Moreover, $U = \begin{bmatrix} 0 & 0 \\ 0 & F \end{bmatrix}$ is a simple right R-module and $V = \begin{bmatrix} F & F \\ 0 & 0 \end{bmatrix}$ is an injective right R-module as V is

a direct summand of $E(R_R) = \begin{bmatrix} F & F \\ F & F \end{bmatrix}$. In particular, U and V are simple-directinjective right R-modules.

Let x be an element of a ring R. We denote by $Ann_R(x)$ the right annihilator of x in R, that is, $Ann_R(x) = \{r \in R \mid xr = 0\}$. Next, we show that the class of left (right) simple-direct-injective rings is closed under direct products.

Proposition 5.4. Let $\{R_i \mid i \in I\}$ be a family of rings and $R = \prod_{i \in I} R_i$. Then R is a right simple-direct-injective ring if and only if each R_i $(i \in I)$ is a right simple-direct-injective ring.

Proof. Suppose that R is a right simple-direct-injective ring and fix $j \in I$. Then R_i regarded as a right R-module is simple-direct-injective since it is a direct summand of R_R (see [3, Lemma 6]). Moreover, it is easily seen that the submodules of R_i are the same whether it is regarded as a right R-module or as a right R_j -module. Thus R_i regarded as a right R_i -module is also a simple-direct-injective module. Conversely, assume that each R_i is a right simple-direct-injective ring. Let S and E be simple submodules of the right R-module R_R with $S \cong E \leq_d R_R$. Clearly, E = eR for some nonzero idempotent e of R. Let $f: S \to E$ be an R-isomorphism and let $s = (s_i)_{i \in I} \in R$ such that $s \in S$ and f(s) = e. Then $s \neq 0$ and sR = S. Since $R/Ann_R(s) \cong S$, $Ann_R(s) = \prod_{i \in I} Ann_{R_i}(s_i)$ is a maximal right ideal of R. It is easily seen that the right R-modules $R/Ann_R(s)$ and $\prod_{i \in I} R_i/Ann_{R_i}(s_i)$ are isomorphic. So there exists $j \in I$ such that $Ann_{R_i}(s_j)$ is a maximal right ideal of R_j and $Ann_{R_i}(s_i) = R_i$ for all $i \neq j$. Hence $s_i = 0$ for all $i \neq j$ and $s_j R_j$ is a simple submodule of the right R_j -module $M_j = R_{jR_j}$. Now let $(e_i)_{i \in I} \in R$ such that $e = (e_i)_{i \in I}$. It is clear that $Ann_R(e) = Ann_R(s)$ and hence $e_i = 0$ for all $i \neq j$ and $s_j R_j \cong e_j R_j$ (as right R_j -modules). Since R_j is right simple-direct-injective and e_j is an idempotent of R_j , it follows that $s_j R_j$ is a direct summand of M_j . Therefore sR is a direct summand of R_R . Consequently, R is right simple-direct-injective. \square

As an application of the preceding proposition, we obtain the following examples of left (and right) simple-direct-injective rings.

Example 5.5. (i) Every direct product of right indecomposable rings (e.g., local rings) is a right simple-direct-injective ring.

(ii) Every direct product of copies of the ring R given in Example 5.2(i) is a left simple-direct-injective ring which is not a right simple-direct-injective ring.

In the next proposition, we provide some necessary conditions for the endomorphism ring of a module to be right simple-direct-injective. Its proof is similar in spirit to that of [12, Proposition 4.6]. We first prove the following lemma.

Lemma 5.6. Let R be a ring and let M be an R-module with $S = End_R(M)$. Let e and f be idempotents in S. Then:

(i) If e(M) is a simple R-module, then eS is a minimal right ideal of S.

(ii) If $e(M) \cap f(M) = 0$, then $eS \cap fS = 0$.

Proof. (i) Suppose that e(M) is a simple R-module. Let $0 \neq s = es \in eS$. Then $0 \neq s(M) \subseteq e(M)$. As e(M) is simple, we have s(M) = e(M) is a direct summand of M. Hence sS = eS by [12, Lemma 1.1]. This implies that eS is a simple S-module.

(ii) Assume that $e(M) \cap f(M) = 0$. Suppose on the contrary that $eS \cap fS \neq 0$. Let $0 \neq s \in eS \cap fS$. Then es = s and fs = s and hence $s(M) \subseteq e(M) \cap f(M)$. But $s(M) \neq 0$. So $e(M) \cap f(M) \neq 0$, a contradiction. It follows that $eS \cap fS = 0$. \square

Proposition 5.7. Let R be a ring and let M be an R-module with $S = End_R(M)$. If the ring S is right simple-direct-injective, then M and S satisfy the following two conditions:

- (a) M is a simple-direct-injective R-module, and
- (b) for every pair of idempotents $e, f \in S$ with $eS \cap fS = 0$, we have $e(M) \cap f(M) = 0$.

The converse holds when the following condition is satisfied:

(c) For any idempotent $e \in S$ such that eS is a minimal right ideal of S, e(M) is a simple R-module.

Proof. Assume that S is a right simple-direct-injective ring. Let e and f be idempotents in S such that e(M) and f(M) are simple and $e(M) \cap f(M) = 0$. Then eS and fS are minimal right ideals of S with $eS \cap fS = 0$ by Lemma 5.6. Applying Theorem 3.2, there exist orthogonal idempotents $g, h \in S$ such that eS = gS and fS = hS. By using again Theorem 3.2, we deduce that M is a simple-direct-injective R-module. This proves (a).

Now to prove (b), let e and f be idempotents in S such that $eS \cap fS = 0$. Since the right S-module S_S is simple-direct-injective, there exist orthogonal idempotents $g, h \in S$ such that eS = gS and fS = hS by Theorem 3.2. Thus e(M) = g(M) and f(M) = h(M) by [12, Lemma 1.1]. Hence $e(M) \cap f(M) = g(M) \cap h(M) = 0$ as g and g are orthogonal.

The converse follows by Theorem 3.2.

The following example shows that the condition (c) in Proposition 5.7 is not necessary for the endomorphism ring of a module to be right simple-direct-injective.

Example 5.8. Consider the ring $R = \begin{bmatrix} F & F \\ 0 & F \end{bmatrix}$, where F is a field. Then the right R-module $M = \begin{bmatrix} F & F \\ 0 & 0 \end{bmatrix}$ is an indecomposable module which is not simple. Moreover, we have $S = End_R(M) \cong F$ (as rings). Clearly, S is a right simple-directinjective ring. On the other hand, the right ideal 1_MS is minimal, but $1_M(M) = M$ is not a simple R-module.

Let R be a ring and M an R-R-bimodule. Then the trivial extension $R \propto M$ is a ring whose underlying group is $R \times M$ with the multiplication defined by (r,m)(s,n)=(rs,rn+ms), where $r,s \in R$ and $m,n \in M$.

Proposition 5.9. Let R be a ring and let M be an R-R-bimodule such that eM(1-e)=0 for any idempotent $e \in R$. If R is a right simple-direct-injective ring, then so is the ring $T=R \propto M$.

Proof. Suppose that R is right simple-direct-injective and let A be a simple direct summand of the right T-module T_T . From [6, Proof of Proposition 4.5], it follows that A = (eR, eM) for some nonzero idempotent e of R. But (0, eM) is a proper T-submodule of A. Then (0, eM) = 0 and hence A = (eR, 0). Let B be another simple direct summand of T_T such that $A \cap B = 0$. As above B = (fR, 0) for some nonzero idempotent f of R with fM = 0. Thus $A \oplus B = (eR, 0) \oplus (fR, 0) = (eR + fR, 0)$. Moreover, it is easily checked that eR and eR are minimal right ideals of eR with $eR \cap fR = 0$. Since eR is a right simple-direct-injective ring, eR + fR is a direct summand of the right eR-module eR-module

References

- [1] M. Altun-Özarslan, Y. Ibrahim, A. Ç. Özcan and M. Yousif, C4- and D4-modules via perspective direct summands, Comm. Algebra, 46(10)(2018), 4480–4497.
- [2] F. W. Anderson and K. R. Fuller, *Rings and categories of modules*, Graduate Texts in Mathematics, vol. 13, Springer-Verlag, New York, 1974.
- [3] E. Büyükaşık, O. Demir and M. Diril, On simple-direct modules, Comm. Algebra, 49(2)(2021), 864–876.
- [4] V. Camillo, Y. Ibrahim, M. Yousif and Y. Zhou, Simple-direct-injective modules, J. Algebra, 420(2014), 39–53.
- [5] A. J. Diesl, S. J. Dittmer and P. P. Nielsen, *Idempotent lifting and ring extensions*, J. Algebra Appl., **15(6)**(2016), 1650112 (16 pages).
- [6] J. L. Garcia, Properties of direct summands of modules, Comm. Algebra, 17(1)(1989), 73–92.
- [7] K. R. Goodearl and R. B. Warfield, Jr., An introduction to noncommutative Noetherian rings, London Math. Soc. Student Texts 16, Cambridge: Cambridge University Press, 1989.
- [8] Y. Ibrahim, M. T. Koşan, T. C. Quynh and M. Yousif, Simple-direct-projective modules, Comm. Algebra, 44(12)(2016), 5163–5178.

- [9] D. Keskin Tütüncü, N. Orhan Ertaş and R. Tribak, On dual Rickart modules and weak dual Rickart modules, Algebra Discrete Math., 25(2)(2018), 200–214.
- [10] T. Y. Lam, Lectures on modules and rings, Graduate Texts in Mathematics, vol. 189, Springer-Verlag, New York, 1999.
- [11] G. Lee, S. T. Rizvi and C. S. Roman, *Dual Rickart modules*, Comm. Algebra, **39(11)**(2011), 4036–4058.
- [12] R. Mazurek, P. P. Nielsen and M. Ziembowski, *Commuting idempotents*, square-free modules, and the exchange property, J. Algebra, **444**(2015), 52–80.
- [13] W. K. Nicholson and M. Yousif, Quasi-Frobenius rings, Cambridge Tracts in Mathematics, vol. 158, Cambridge University Press, Cambridge, 2003.
- [14] D. W. Sharpe and P. Vámos, *Injective modules*, Cambridge University Press, London-New York, 1972.
- [15] A. Tuganbaev, *Rings close to regular*, Mathematics and Its Applications, vol. **545**, Kluwer Academic Publishers, Dordrecht-Boston-London, 2002.
- [16] R. B. Warfield, Jr., A Krull-Schmidt theorem for infinite sums of modules, Proc. Amer. Math. Soc., 22(2)(1969), 460–465.