• Title/Summary/Keyword: Inexpensive

Search Result 1,279, Processing Time 0.027 seconds

An Empirical Comparison among Initialization Methods of Holt-Winters Model for Railway Passenger Demand Forecast (철도여객수요예측을 위한 Holt-Winters모형의 초기값 설정방법 비교)

  • 최태성;김성호
    • Journal of the Korean Society for Railway
    • /
    • v.7 no.1
    • /
    • pp.9-13
    • /
    • 2004
  • Railway passenger demand forecasts may be used directly, or as inputs to other optimization models use them to produce estimates of other activities. The optimization models require demand forecasts at the most detailed level. In this environment exponential smoothing forecasting methods such as Holt-Winters are appropriate because it is simple and inexpensive in terms of computation. There are several initialization methods for Holt-Winters Model. The purpose of this paper is to compare the initialization methods for Holt-Winters model.

Two Step Surface Texturing of Silicon Wafers using Micro Blaster (마이크로 블라스터를 이용한 실리콘 웨이퍼의 2단계 표면 텍스쳐링)

  • Cho, Chan-Seob;Jung, Sang-Hoon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.9 no.3
    • /
    • pp.5-9
    • /
    • 2010
  • Recently, the important issues of solar cell are low cost and high efficiency. Making low cost and high efficiency solar cell, there are many effects to development of inexpensive wafer, simplify process and improve optical, electrical properties. In this the study, the 2 step texturing method using micro blaster was developed to decrease reflection of incident lights. Air bridge electrode structure is suggested to expand the effective surface area and decrease the series resistance of finger electrode. The effects of 1 step texturing and 2 step texturing by micro blaster are compared. Reflectance of 1 step and 2 step texturing are measured 28.7% and 25.5%, respectively. The reflectance of 2 step texturing sample is lower about 3.2% than 1 step textured sample.

Optimal Design and Performance Analysis of Permanent Magnet Assisted Synchronous Reluctance Portable Generators

  • Baek, Jeihoon;Kwak, Sangshin;Toliyat, Hamid A.
    • Journal of Magnetics
    • /
    • v.18 no.1
    • /
    • pp.65-73
    • /
    • 2013
  • In this paper, design and performance analysis of robust and inexpensive permanent magnet-assisted synchronous reluctance generators (PMa-SynRG) for tactical and commercial generator sets is studied. More specifically, the optimal design approach is investigated for minimizing volume and maximizing performance for the portable generator. In order to find optimized PMa-SynRG, stator winding configurations and rotor structures are analyzed using the lumped parameter model (LPM). After comparisons of stator windings and rotor structure by LPM, the selected stator winding and rotor structure are optimized using a differential evolution strategy (DES). Finally, output performances are verified by finite element analysis (FEA) and experimental tests. This design process is developed for the optimized design of PMa-SynRG to achieve minimum magnet and machine volume as well as maximum efficiency simultaneously.

First-Principles Study on the Electronic Structure of Bulk and Single-Layer Boehmite

  • Son, Seungwook;Kim, Dongwook;Na-Phattalung, Sutassana;Ihm, Jisoon
    • Nano
    • /
    • v.13 no.12
    • /
    • pp.1850138.1-1850138.6
    • /
    • 2018
  • Two-dimensional (2D) or layered materials have a great potential for applications in energy storage, catalysis, optoelectronics and gas separation. Fabricating novel 2D or quasi-2D layered materials composed of relatively abundant and inexpensive atomic species is an important issue for practical usage in industry. Here, we suggest the layer-structured AlOOH (Boehmite) as a promising candidate for such applications. Boehmite is a well-known layer-structured material and a single-layer can be exfoliated from the bulk boehmite by breaking the interlayer hydrogen bonding. We study atomic and electronic band structures of both bulk and single-layer boehmite, and also obtain the single-layer exfoliation energy using first-principles calculations.

Diagnostic ex vivo assay of glucose in live cell using voltammetry

  • Ly, Suw Young;Leea, Chang Hyun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.4
    • /
    • pp.1379-1385
    • /
    • 2018
  • The hand held voltammetry systems searched diabetic assay using glucose sensor of fluorine nafion doped carbon nanotube electrode (FCNE). An inexpensive graphite carbon pencil was used as an Ag/AgCl reference and Pt counter electrode. Upon combining and using three electrode systems, optimum square wave (SW) stripping results were attained to 1.0-9.0 ug/L with 8 points. Statistic RSD precision was of 6.02 % with n=15 in 0.1 mg/L glucose. After a total of 200 second accumulation times, analytical detection limit of 0.8 ug/L was obtained. This developed technique was applied to urine samples from diabetic patients urine for fluid analysis, it was determined that the sensor can be used with a diagnostics in the ex vivo of live cells and non treated biological fluid.

ON THE PROXIMAL POINT METHOD FOR AN INFINITE FAMILY OF EQUILIBRIUM PROBLEMS IN BANACH SPACES

  • Khatibzadeh, Hadi;Mohebbi, Vahid
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.3
    • /
    • pp.757-777
    • /
    • 2019
  • In this paper, we study the convergence analysis of the sequences generated by the proximal point method for an infinite family of pseudo-monotone equilibrium problems in Banach spaces. We first prove the weak convergence of the generated sequence to a common solution of the infinite family of equilibrium problems with summable errors. Then, we show the strong convergence of the generated sequence to a common equilibrium point by some various additional assumptions. We also consider two variants for which we establish the strong convergence without any additional assumption. For both of them, each iteration consists of a proximal step followed by a computationally inexpensive step which ensures the strong convergence of the generated sequence. Also, for this two variants we are able to characterize the strong limit of the sequence: for the first variant it is the solution lying closest to an arbitrarily selected point, and for the second one it is the solution of the problem which lies closest to the initial iterate. Finally, we give a concrete example where the main results can be applied.

Sirius: The KASI-SNU Optical Intensity Interferometer

  • Oh, Junghwan;Trippe, Sascha;Wagner, Jan;Byun, Do-young
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.58.3-58.3
    • /
    • 2019
  • Optical intensity interferometry, developed in the 1950s, is a simple and inexpensive method for achieving angular resolutions on microarcsecond scales. Its low sensitivity has limited intensity interferometric observations to bright stars so far. Substantial improvements are possible by using avalanche photodiodes (APDs) as light detectors. We present here the results of laboratory measurements with a prototype astronomical intensity interferometer using APDs in continuous ("linear") detection mode - arguably, the first of its kind. We used two interferometer configurations, one with zero baseline and one with variable baseline. Using a superluminous diode as light source, we unambiguously detected Hanbury Brown-Twiss photon-photon correlations at very high significance. From measuring the correlation as function of baseline, we measured the angular diameter of the light source, in analogy to the measurement of the angular diameter of a star. Our results demonstrate the possibility to construct large astronomical intensity interferometers that can address a multitude of astrophysical science cases.

  • PDF

Development of a Laboratory-based Calibration System for 5-Hole Probes (5공 프로브 실험실용 교정 시스템 개발)

  • Kim, Changmin;Baek, Seungchan;Ji, Changeun;Hwang, Wontae
    • Journal of the Korean Society of Visualization
    • /
    • v.18 no.3
    • /
    • pp.122-128
    • /
    • 2020
  • In the field of experimental fluid dynamics, the 5-hole probe is one of the most widely used tools to measure flow velocity and pressure. We hereby describe the development of an inexpensive laboratory-based flow calibration system for 5-hole probes. The system is applied to a custom L-shaped probe, and the probe performance is compared against a standard commercial probe in a custom wind tunnel. The setup allows rotation of the probe around the yaw and pitch axes. Static and total pressure values are calculated, and then calibration maps are constructed based on the yaw and pitch angles. Using these maps, errors of the custom probe are found to be ±5% for velocity magnitude and ±3° for direction, compared to the commercial probe, when both pitch and yaw angles are within 40°.

Manufacturing of Plastic Noise Barrier Structure Using Extrusion Molding (압출성형을 이용한 플라스틱 방음벽 구조물 제작 연구)

  • Kim, Hyung-Kook
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.6
    • /
    • pp.76-81
    • /
    • 2021
  • A plastic noise barrier is a structure installed to minimize noise, and it is composed of the main plate, sound-absorbing plate, and sound-absorbing material. Plastic noise barrier structures have several advantages compared to other products, such as light weight, anticorrosion, durability, easy assembly, rapid construction, and low costs. In this study, the main and sound-absorbing plates were manufactured through extrusion molding, and the sound-absorbing plate was finished with a press to improve the conventional injection molding. Extrusion molding dies and punch dies were designed, and a profile extrusion-molding system was developed. Thus, inexpensive and efficient sound-absorbing and main plates can be produced, and the noise barrier structure can be assembled rapidly. Additionally, a noise barrier structure with extended service life and excellent quality can be constructed by creating uniform free space to accommodate increased temperatures after assembly and installation.

Three-Dimensional Measurements of the Specular Components by Using Direct Phase-Measuring Transmission Deflectometry

  • Na, Silin;Shin, Sanghoon;Kim, Doocheol;Yu, Younghun
    • New Physics: Sae Mulli
    • /
    • v.68 no.11
    • /
    • pp.1275-1280
    • /
    • 2018
  • We demonstrated transmission direct phase-measuring deflectometry (DPMD) with a specular phase object having discontinuous surfaces by using two displays and a two-dimensional array detector for display and by recording the distorted fringe patterns. Three-dimensional (3D) information was obtained by calculating the height map directly from the phase information. We developed a mathematical model of the phase-height relationship in transmission DPMD. Unlike normal transmission deflectometry, this method supports height measurement directly from the phase. Compared with other 3D measurement techniques such as interferometry, this method has the advantages of being inexpensive and easy to implement.