Browse > Article
http://dx.doi.org/10.4283/JMAG.2013.18.1.065

Optimal Design and Performance Analysis of Permanent Magnet Assisted Synchronous Reluctance Portable Generators  

Baek, Jeihoon (Department of Electrical & Computer Engineering, Texas A&M University)
Kwak, Sangshin (School of Electrical and Electronics Engineering, Chung-ang University)
Toliyat, Hamid A. (Department of Electrical & Computer Engineering, Texas A&M University)
Publication Information
Abstract
In this paper, design and performance analysis of robust and inexpensive permanent magnet-assisted synchronous reluctance generators (PMa-SynRG) for tactical and commercial generator sets is studied. More specifically, the optimal design approach is investigated for minimizing volume and maximizing performance for the portable generator. In order to find optimized PMa-SynRG, stator winding configurations and rotor structures are analyzed using the lumped parameter model (LPM). After comparisons of stator windings and rotor structure by LPM, the selected stator winding and rotor structure are optimized using a differential evolution strategy (DES). Finally, output performances are verified by finite element analysis (FEA) and experimental tests. This design process is developed for the optimized design of PMa-SynRG to achieve minimum magnet and machine volume as well as maximum efficiency simultaneously.
Keywords
concentrated winding; differential evolution strategy; distributed winding; lumped parameter model; permanent magnet assisted synchronous generator;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 L. Jian, G. Xu, Y. Gong, J. Song, J. Liang, and M. Chang, Progress In Electromagnetics Research 113, 351 (2011).   DOI
2 H. Jussila, P. Salminen, M. Niemela, and J. Pyrhonen, in Proc. Power Engineering, Energy and Electrical Drives, Terremolinos, Spain (2007) pp. 191-194.
3 P. M. Lindh, H. K. Jussila, M. Niemela, A. Parviainen, and J. Pyrhonen, IEEE Trans. Magn. 45, 2085 (2009).   DOI   ScienceOn
4 L. Chong and M. F. Rahman, IET Electric Power Appl. 4, 249 (2010).   DOI   ScienceOn
5 P. Sergeant, F. D. Belie, and J. Melkebeek, IEEE Trans. Magn. 45, 1756 (2009).   DOI   ScienceOn
6 K. I. Laskaris and A. G. Kladas, IEEE Trans. Ind. Electron. 57, 138 (2010).   DOI   ScienceOn
7 D. G. Dorrell, M. Hsieh, M. Popescu, L. Evans, D. A. Station, and V. Grout, IEEE Trans. Ind. Electron. 58, 3741 (2011).   DOI   ScienceOn
8 A. M. EL-Refaie and T. M. Jahns, IEEE Trans. Energy Conversion 23, 53 (2008).   DOI   ScienceOn
9 A. S. Abdel-Khalik, S. M. Gadoue, M. I. Masoud, and B. W. Wiliams, IEEE Trans. Energy Conversion 26, 501 (2011).   DOI   ScienceOn
10 M. Barcaro, A. Faggion, L. Sgarbossa, N. Bianchi, and S. Bolognani, IET Electric Power Appl. 4, 537 (2010).
11 A. M. El-Refaie, IET Electric Power Appl. 5, 59 (2011).   DOI   ScienceOn
12 H. Murakami, Y. Honda, and H. Kiriyama, in Proc. IEEE Industry Applications Society Annual Meeting, Phoenix, USA (1999) pp. 840-845.
13 Y. Kim, J. Magnetics 17, 280 (2012).   DOI   ScienceOn
14 W. L. Soong, IEEE Trans. Ind. Appl. 38, 1251 (2002).   DOI   ScienceOn
15 T. M. Jahns and V. Caliskan, IEEE Trans. Ind. Appl. 35, 1347 (1999).   DOI   ScienceOn
16 P. Niazi, H. A. Toliyat, D. Cheong, and J. Kim, IEEE Trans. Ind. Appl. 43, 542 (2007).   DOI   ScienceOn