• Title/Summary/Keyword: Inductively Coupled Plasma

Search Result 1,419, Processing Time 0.035 seconds

Spatial Distribution of Excited Argon Species in and Inductively Coupled Plasma

  • 최범석
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.11
    • /
    • pp.1172-1174
    • /
    • 1998
  • Spatial(radial and height) distributions of excited argon species are measured for an inductively coupled plasma under five operating conditions: 1) no carrier gas, 2) carrier gas without aerosol, 3) carrier gas with desolvated aerosol, 4) carrier gas with aerosol, 5) carrier gas with aerosol and excess lithium. A complete RF power mapping of argon excited states is obtained. The excited states of argon for a typical analytical torch rapidly diffuse towards the center in the higher region of the plasma. The presence of excess lithium makes no significant change in the excited states of argon. The increase in the RF power increases the intensity of argon excited states uniformly across the radial coordinate.

Properties of Inductively coupled Ar/CH4 plasma based on plasma diagnostics with fluid simulation

  • Cha, Ju-Hong;Son, Ui-Jeong;Yun, Yong-Su;Han, Mun-Gi;Kim, Dong-Hyeon;Lee, Ho-Jun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.210.2-210.2
    • /
    • 2016
  • An inductively coupled plasma source was prepared for the deposition of a-C:H thin film. Properties of the inductively coupled plasma source are investigated by fluid simulation including Navier-Stokes equations and home-made tuned single Langmuir probe. Signal attenuation ratios of the Langmuir probe harmonic frequency were 13.56Mhz and 27.12Mhz. Dependencies of plasma parameters on process parameters were accord with simulation results. Ar/CH4 plasma simulation results shown that hydrocarbon radical densities have their lowest value at the vicinity of gas feeding line due to high flow velocity. For input power density of 0.07W/cm3, CH radical density qualitatively follows electron density distribution. On the other hand, central region of the chamber become deficient in CH3 radical due to high dissociation rate accompanied with high electron density. The result suggest that optimization of discharge power is important for controlling deposition film quality in high density plasma sources.

  • PDF

Iron Determination in Rat Plasma Samples by Inductively Coupled Plasma Emission Spectrometry and Application to Pharmacokinetic Studies

  • Li, Tie-Fu;Deng, Ying-Jie;Ma, Guang-Li;Jin, Jie;Li, Song
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.11
    • /
    • pp.1571-1574
    • /
    • 2003
  • This paper describes an inductively coupled plasma emission spectrometric method for the analysis of Fe in rat plasma. Calibration curves were obtained in the range of 0.125-1.50 ${\mu}g{\cdot}mL^{-1}$. The relative standard deviation ranges from 5.93% to 6.80%, and accuracy was between 87.6 and 102.0%. Dilution with water had no influence on the performance of the method, which could then be used to quantify Fe concentration in plasma up to 0.50 ${\mu}g{\cdot}mL^{-1}$. The limit of quantification was 0.10 ${\mu}g{\cdot}mL^{-1}$. At this level, the average relative standard deviation was 6.8%. The results indicate that the method meets the accuracy and precision requirements for the pharmacokinetic studies. The Fe concentration in rat plasma was measured and the main pharmacokinetic parameters were calculated by Topfit 2.0 (GmbH. Shering AG, Godecke AG, Germany).

A Study on Nitrogen Doping of Graphene Based on Optical Diagnosis of Horizontal Inductively Coupled Plasma (수평형 유도결합 플라즈마를 이용한 그래핀의 질소 도핑에 대한 연구)

  • Jo, Sung-Il;Jeong, Goo-Hwan
    • Journal of the Korean institute of surface engineering
    • /
    • v.54 no.6
    • /
    • pp.348-356
    • /
    • 2021
  • In this study, optical diagnosis of plasma was performed for nitrogen doping in graphene using a horizontal inductively coupled plasma (ICP) system. Graphene was prepared by mechanical exfoliation and the ICP system using nitrogen gas was ignited for plasma-induced and defect-suppressed nitrogen doping. In order to derive the optimum condition for the doping, plasma power, working pressure, and treatment time were changed. Optical emission spectroscopy (OES) was used as plasma diagnosis method. The Boltzmann plot method was adopted to estimate the electron excitation temperature using obtained OES spectra. Ar ion peaks were interpreted as a reference peak. As a result, the change in the concentration of nitrogen active species and electron excitation temperature depending on process parameters were confirmed. Doping characteristics of graphene were quantitatively evaluated by comparison of intensity ratio of graphite (G)-band to 2-D band, peak position, and shape of G-band in Raman profiles. X-ray photoelectron spectroscopy also revealed the nitrogen doping in graphene.

Influence of Inductively Coupled Oxygen Plasma on the Surface of Poly(ether sulfone)

  • Lee, Do Kyung;Sohn, Young-Soo
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.4
    • /
    • pp.214-217
    • /
    • 2022
  • The effect of inductively coupled plasma (ICP) treatment with O2 gas on the surface properties of poly(ether sulfone) (PES) was investigated. X-ray photoelectron spectroscopy (XPS) was used to analyze the chemical characteristics of the O2 plasma-treated PES films. The surface roughness of the pristine and O2 plasma-treated PES films for different RF powers of the ICP was determined using an atomic force microscope (AFM). The contact angles of the PES films were also measured, using which the surface free energies were calculated. The O1s XPS spectra of the PES films revealed that the number of polar functional groups increased following the O2 plasma treatment. The AFM analysis showed the average surface roughness increased from 1.01 to 4.48 nm as the RF power of the ICP was increased. The contact angle measurements revealed that the PES films became more hydrophilic as the RF power of the ICP was increased. The total surface energy increased with the RF power of the ICP, resulting from the increased polar energy component.

The Present Status of Development of Inductively Coupled Plasma Simulator based on Fluid Model (유체 모델을 기반으로 하는 유도 결합 플라즈마 시뮬레이터 개발 현황)

  • Kwon, D.C.;Yoon, N.S.
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.3
    • /
    • pp.151-163
    • /
    • 2009
  • The domestic development status of Inductively Coupled Plasma (ICP) simulator which is based on fluid model is explained. As each part which composes the unified simulator, electron heating module, charged and neutral particle transport module, surface reaction module including a sheath model, and GUI (Graphic User Interface) with pre- and post-processors are described in order. Also, we present data base status of chemical reaction and physical collision, which has been applied to the recently developed simulator until now. Lastly, some future plans of development are suggested.

A Study on the Ballast Design of a Inductively Coupled Plasma Light Source based on Oscillation Theory (발진 이론에 근거한 유도결합형 방전광원의 안정기 설계에 관한 연구)

  • Kim, Cherl-Jin;Yim, Youn-Chan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.6
    • /
    • pp.1110-1115
    • /
    • 2009
  • We studied on the design of electrical parameters for ICP(Inductively Coupled Plasma) light sources which can be effective to improve the electrical power efficiency of it. These parameters were derivated from Barkhausen theory about the oscillating condition of a ballaster. The relationships of $f-I_p$ and f-n were calculated theoretically and then these relationships were compared with the measured results about $I_p$ and power depending to a discharge length(l) of ICP light source. Finally, we can see that a specific range of induced current depending to a discharge length would be necessary to minimize the change of magnetization inductance and driving frequency at driving.

Effect of Inductively Coupled Plasma (ICP) Power on the Properties of Ultra Hard Nanocrystalline TiN Coatings (유도결합 플라즈마 파워변화에 따른 초경도 나노결정질 TiN 코팅막의 물성변화)

  • Chun, Sung-Yong
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.3
    • /
    • pp.212-217
    • /
    • 2013
  • Ultra hard TiN coatings were fabricated by DC and ICP (inductively coupled plasma) magnetron sputtering techniques. The effects of ICP power, ranging from 0 to 300 W, on the coating microstructure, crystallographic, and mechanical properties were systematically investigated with FE-SEM, AFM, HR-XRD and nanoindentation. The results show that ICP power has a significant influence on the coating microstructure and mechanical properties of TiN coatings. With an increasing ICP power, the film microstructure evolves from an apparent columnar structure to a highly dense one. Grain sizes of TiN coatings decreased from 12.6 nm to 8.7 nm with an increase of the ICP power. A maximum nanohardness of 67.6 GPa was obtained for the coatings deposited at an ICP power of 300 W. The crystal structure and preferred orientation in the TiN coatings also varied with the ICP power, exerting an effective influence on film nanohardness.

A Comparative Study of Superhard TiN Coatings Deposited by DC and Inductively Coupled Plasma Magnetron Sputtering (DC 스퍼터법과 유도결합 플라즈마 마그네트론 스퍼터법으로 증착된 수퍼하드 TiN 코팅막의 물성 비교연구)

  • Chun, Sung-Yong
    • Journal of the Korean institute of surface engineering
    • /
    • v.46 no.2
    • /
    • pp.55-60
    • /
    • 2013
  • Superhard TiN coatings were fabricated by DC and ICP (inductively coupled plasma) assisted magnetron sputtering techniques. The effect of ICP power, ranging from 0 to 300 W, on coating microstructure, preferred orientation mechanical properties were systematically investigated with HR-XRD, SEM, AFM and nanoindentation. The results show that ICP power has a significant influence on coating microstructure and mechanical properties of TiN coatings. With the increasing of ICP power, coating microstructure evolves from the columnar structure of DC process to a highly dense one. Grain sizes of TiN coatings were decreased from 12.6 nm to 8.7 nm with increase of ICP power. The maximum nanohardness of 67.6 GPa was obtained for the coatings deposited at ICP power of 300 W. Preferred orientation in TiN coatings also vary with ICP power, exerting an effective influence on film nanohardness.

Characterization and deposition of ZnO thin films by Reactive Magnetron Sputtering using Inductively-Coupled Plasma (ICP) (유도결합형 플라즈마를 사용한 반응성 마그네트론 스퍼터링에 의한 ZnO 박막 증착 및 특성분석)

  • Kim, Dong-Sun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.2
    • /
    • pp.83-89
    • /
    • 2011
  • In this study, we investigated the effects of shutter control by Reactive Magnetron Sputtering using Inductively-Coupled Plasma(ICP) for obtaining ZnO thin films with high purity. The surface morphologies and structure of deposited ZnO thin films were characterized using Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM) and X-ray Diffractometer (XRD). Also, optical and chemical properties of ZnO thin films were analyzed by Spectroscopic Ellipsometer (SE) and X-ray Photoelectron spectroscopy (XPS). As a result, it observed that ZnO thin films grown at reactive sputtering using shutter control and ICP were higher density, lower surface roughness, better crystallinity than other conventional sputtering deposition methods. For obtaining better quality deposition ZnO thin films, we will investigate the effects of substrate temperature and RF power on shutter control by a reactive magnetron sputtering using inductively-coupled plasma.