DOI QR코드

DOI QR Code

The Present Status of Development of Inductively Coupled Plasma Simulator based on Fluid Model

유체 모델을 기반으로 하는 유도 결합 플라즈마 시뮬레이터 개발 현황

  • Kwon, D.C. (Department of Electrical Engineering, Chungbuk National University) ;
  • Yoon, N.S. (Department of Electrical Engineering, Chungbuk National University)
  • Published : 2009.05.30

Abstract

The domestic development status of Inductively Coupled Plasma (ICP) simulator which is based on fluid model is explained. As each part which composes the unified simulator, electron heating module, charged and neutral particle transport module, surface reaction module including a sheath model, and GUI (Graphic User Interface) with pre- and post-processors are described in order. Also, we present data base status of chemical reaction and physical collision, which has been applied to the recently developed simulator until now. Lastly, some future plans of development are suggested.

유체 모델을 기반으로 하는 국내의 유도 결합 플라즈마원의 시뮬레이터 개발 현황을 정리하였다. 전체 시뮬레이터를 구성하는 각 부분으로서, 전자 가열, 하전 입자 및 중성종 수송, sheath를 포함한 표면 반응, 그리고 GUI (Graphic User Interface) 및 전후처리기 등의 순으로 설명되었다. 현재까지 시뮬레이터에 구현된 화학 반응 데이터와 swarm 데이터도 정리하여 보았고, 앞으로의 개발 방향을 전망하여 보았다.

Keywords

References

  1. M. M. Turner, Phys. Rev. Lett. 71, 1884 (1993)
  2. N. S. Yoon, S. S. Kim, C. S. Chang, and D. I. Choi, Phys. Rev. E 54, 757 (1996) https://doi.org/10.1103/PhysRevE.54.757
  3. K. –I. You, N. S. Yoon, and S. M. Hwang, Surf. Coat. Technol. 114, 60 (1999) https://doi.org/10.1016/S0257-8972(99)00022-5
  4. S. S. Kim, C. S. Chang, N. S. Yoon, and K. W. Hwang, Phys. Plasmas 6, 2926 (1999) https://doi.org/10.1063/1.873250
  5. N. S. Yoon, B. H. Park, J. H. Kim, and Y. H. Shin, Thin Solid Films 435, 293 (2003) https://doi.org/10.1016/S0040-6090(03)00386-9
  6. D. C. Kwon, N. S. Yoon, J. H. Kim, Y. H. Shin, and K. H. Chung, J. Korean Phys. Soc. 50, 40 (2007) https://doi.org/10.3938/jkps.50.40
  7. N. S. Yoon, S. M. Hwang, and D. I. Choi, Phys. Rev. E 55, 7536 (1997) https://doi.org/10.1103/PhysRevE.55.7536
  8. K. –I. You and N. S. Yoon, Phys. Rev. E 59, 7074 (1999) https://doi.org/10.1103/PhysRevE.59.7074
  9. S. S. Kim, H. Y. Chang, C. S. Chang, and N. S. Yoon, Appl. Phys. Lett. 77, 492 (2000) https://doi.org/10.1063/1.127021
  10. T. Panagopoulos, D. Kim, V. Midha, and D. J. Economou, J. App. Phys. 91, 2687 (2002) https://doi.org/10.1063/1.1448673
  11. S. B. Song and N. S. Yoon, Surf. Coat. Technol. 171, 183 (2003) https://doi.org/10.1016/S0257-8972(03)00267-6
  12. B. S. Jung, D. C. Kwon, and N. S. Yoon, will be submitted
  13. 정봉삼, 윤남식, 한국진공학회지 17, 419 (2008) https://doi.org/10.5757/JKVS.2008.17.5.419
  14. D. C. Kwon and N. S. Yoon, J. Korean Phys. Soc. 51, 522 (2007) https://doi.org/10.3938/jkps.51.522
  15. E. F. Jaeger, L. A. Berry, J. S. Tolliver, and D. B. Batchelor, Phys. Plasmas 2, 2597 (1995) https://doi.org/10.1063/1.871222
  16. S. V. Patanker, Numerical Heat Transfer and Fluid Flow, McGraw-Hill, (1980)
  17. 배상현, 권득철, 윤남식, 한국진공학회지 17, 426 (2008) https://doi.org/10.5757/JKVS.2008.17.5.426
  18. S. S. Kim, C. S. Chang, and N. S. Yoon, J. Korean Phys. Soc. 29, 678 (1996)
  19. P. L. G. Ventzek, R. J. Hoekstra, and M. J. Kushner, J. Vac. Sci. Technol B 12, 461 (1994) https://doi.org/10.1116/1.587101
  20. H. H. Choe, N. S. Yoon, S. S. Kim, and D. I. Choi, J. Computational Phys. 170, 550 (2001) https://doi.org/10.1006/jcph.2001.6748
  21. D. C. Kwon, N. S. Yoon, J. H. Kim, Y. H. Shin, and K. H. Chung, J. Korean Phys. Soc. 47, 163 (2005)
  22. K. –I. You, N. S. Yoon, and S. M. Hwang, Surf. Coat. Technol. 114, 60 (1999) https://doi.org/10.1016/S0257-8972(99)00022-5
  23. N. S. Yoon, K. –I. You, and S. M. Hwang, Surf. Coat. Technol. 112, 34 (1999) https://doi.org/10.1016/S0257-8972(98)00746-4
  24. S. S. Kim, S. Hamaguchi, N. S. Yoon, C. S. Chang, Y. D. Lee, and S. H. Ku, Phys. Plasmas 8, 1384 (2001) https://doi.org/10.1063/1.1350671
  25. T. Panagopoulos, D. Kim, V. Midha, and D. J. Economou, J. App. Phys. 91, 2687 (2002) https://doi.org/10.1063/1.1448673
  26. D. Bohm, Characteristics of Electrical Discharges in Magnetic Field, McGraw-Hill, (1949)
  27. K. -B. Persson, Phys. Fluids 5, 1625 (1962) https://doi.org/10.1063/1.1706574
  28. V. A. Godyak and N. Sternberg, IEEE Trans. Plasma Sci. 18, 159 (1990) https://doi.org/10.1109/27.45519
  29. N. S. Yoon, N. H. Choi, B. H. Park, and D. I. Choi, IEEE Trans. Plasma. Sci. 23, 609 (1995) https://doi.org/10.1109/27.467981
  30. 권득철, 윤남식, 김정형, 신용현, Trans. KIEE. 53C, 433 (2004)
  31. R. A. Stewart, P. Vitello, and D. B. Graves, J. Vac. Sci. Technol. B 12, 478 (1994) https://doi.org/10.1116/1.587102
  32. E. Meeks, R. S. Larson, P. Ho, S. M. Han, E. Edelberg, E. Aydil, and C. Apblett J. Vac. Sci. Technol. A 16, 544 (1998) https://doi.org/10.1116/1.581096
  33. E. Meeks and J. W. Shon IEEE Trans. on Plasma Sci. 23, 539, (1995) https://doi.org/10.1109/27.467973
  34. J. T. Gudmundsson, I. G. Kouznetsov, K. K. Patel, and M. A. Lieberman J. Phys. D: Appl. Phys. 34, 1100 (2001) https://doi.org/10.1088/0022-3727/34/7/312
  35. D. B. Hash, D. Bose, M. V. V. S. Rao, B. A. Cruden, and M. Meyyappan, J. Appl. Phys. 90, 2184 (2001)
  36. S. Rauf and M. J. Kushner J. Appl. Phys. 85, 3450 (1999)
  37. P. Ho, J. E. Johannes, and R. J. Buss, J. Vac. Sci. Technol. A 19, 2344 (2001) https://doi.org/10.1116/1.1387048
  38. S. Rauf and P. L. G. Ventzek, J. Appl. Phys. 92, 6998 (2002) https://doi.org/10.1063/1.1519950
  39. C. Riccardi, R. Barni, F. D. Colle, and M. Fontanesi, IEEE Trans. on Plasma Sci., 28, 278 (2000) https://doi.org/10.1109/27.842923
  40. M. Baeva, X. Luo, B. Pfelzer, T. Repsilber, and J. Uhlenbusch, Plasma Sources Sci. Technol. 9, 128 (2000) https://doi.org/10.1088/0963-0252/9/2/305
  41. J. T. Gudmundsson, J. Phys. D: Appl. Phys. 35, 328 (2002) https://doi.org/10.1088/0022-3727/35/4/308
  42. G. I. Font, W. L. Morgan, and G. Mennenga, J. Appl. Phys. 91, 3530 (2002) https://doi.org/10.1063/1.1448894
  43. T. Kimura and K. Ohe, Plasma Sources Sci. Technol. 8, 533 (1999)
  44. M. W. Kiehlbauch and D. B. Graves, J. Appl. Phys. 89, 2047 (2001) https://doi.org/10.1063/1.1337088
  45. Y. Tanaka1, T. Michishita, and Y. Uesugi, Plasma Sources Sci. Technol. 14, 134 (2005) https://doi.org/10.1088/0963-0252/14/1/016
  46. D. C. Kwon, N. S. Yoon, J. H. Kim, Y. H. Shin, and K. H. Chung, J. Korean Phys. Soc. 47, 163 (2005)
  47. J. D. Bukowski and D. B. Graves, P. Vitello, J. Appl. Phys. 80(5), 2614 (1996) https://doi.org/10.1063/1.363169
  48. Y. Itikawa, J. Phys. Chem. Ref. Data, 38, 1 (2009) https://doi.org/10.1063/1.3025886
  49. E. W. McDaniel and E. A. Mason, The mobility and Diffusion of Ions in Gases (Wiley, New York, 1973)
  50. http://uigelz.eecs.umich.edu/pub/data/e_reactions.pdf
  51. T. Shimada, Y. Nakamura, Z. L. Petrovic, and T. Makabe, J. Phys. D: Appl. Phys. 36, 1936 (2003) https://doi.org/10.1088/0022-3727/36/16/304
  52. David R. Lide, ed., CRC Handbook of Chemistry and Physics, Internet Version 2007, (87th Edition)
  53. H. Tawara, Y. Itikawa, H. Nishimura, and M. Yoshino, J. Phys. and Chem. Ref. Data, 19, 617 (1990) https://doi.org/10.1063/1.555856
  54. J. L. Giuliani, V. A. Shamamian, R. E. Thomas, J. P. Apruzese, M. Mulbrandon, R. A. Rudder, R. C. Hendry, and A. E. Robson, IEEE Trans. on Plasma Sci. 5, 1317 (1999) https://doi.org/10.1109/27.799808
  55. A. Metze, D. W. Ernie, and H. J. Oskam, J. Appl. Phys. 60, 3081 (1986) https://doi.org/10.1063/1.337764
  56. P. A. Miller and M. E. Riley, J. Appl. Phys. 82, 3689 (1997) https://doi.org/10.1063/1.365732
  57. D. Bose, T. R. Govindan, and M. Meyyappan, J. Appl. Phys. 87, 7176 (2000) https://doi.org/10.1063/1.372966
  58. Z. L. Dai, Y. N. Wang, and T. C. Ma, Phys. Rev. E 65, 036403 (2002) https://doi.org/10.1103/PhysRevE.65.036403
  59. D. C. Kwon and N. S. Yoon, will be published
  60. R. A. Stewart, P. Vitello, D. B. Graves, E. F. Jaeger, and L. A. Berry, Plasma Sources Sci. Technol. 4, 36 (1995) https://doi.org/10.1088/0963-0252/4/1/005
  61. J. C. Helmer and J. Feinstein, J. Vac. Sci. Technol. B 12, 507(1994) https://doi.org/10.1116/1.587106
  62. R. H. Cohen and T. D. Rognlien, Phys. Plasmas 3, 1839 (1996) https://doi.org/10.1063/1.871979
  63. V. A. Godyak, R. B. Piejak, B. M. Alexandrovich, and A. I. Smolyakov, Plasma Sources Sci. Technol. 10, 459 (2001) https://doi.org/10.1088/0963-0252/10/3/310
  64. G. DiPeso, T. D. Rognlien, V. Vahedi, and D. W. Hewett, IEEE Trans. Plasma Sci. 23, 550 (1995) https://doi.org/10.1109/27.467974
  65. D. C. Kwon and N. S. Yoon, will be submitted
  66. C. Costin, L. Marques, G. Popa, and G. Gousset, Plasma Sources Sci. Technol. 14, 168 (2005) https://doi.org/10.1088/0963-0252/14/1/018
  67. D. Humbird and D. B. Graves, J. Chem. Phys. 120, 2405 (2004) https://doi.org/10.1063/1.1636722
  68. J. A. Sethian, Level Set Methods and Fast Marching Methods (Cambridge University Press, New York, 1999)
  69. B. B. Welch, K. Jones, and J. Hobbs, Practical Programming in Tcl and Tk, Prentice Hall, (2003)
  70. Kitware Inc., The VTK User;s Guide, Kitware Inc., (2003)
  71. S. S. Kim, C. S. Chang, N. S. Yoon, and Ki-Woong Hwang, Physics of Plasmas 6, 2926 (1999) https://doi.org/10.1063/1.873250
  72. H. J. Kim, D. C. Kwon, and N. S. Yoon, Current Appl. Phys. 9, 647 (2009) https://doi.org/10.1016/j.cap.2008.04.016
  73. 유동훈, 권득철, 이종규, 윤남식, 김정형, 신용현, Trans. KIEE. 54C, 326 (2005)
  74. 유동훈, 김정미, 윤남식, 이승욱, 설여송, 대한전자공 학회 및 대한전기학회 충북지부 2002년도 합동 추계 학술대회 논문집 pp. 32-36
  75. 이원기, 배상현, 권득철, 윤남식, 대한전기학회 충북지부 2009년 춘계학술대회 논문집, 게재예정
  76. H. Y. Kim, D. C. Kwon, N. S. Yoon, H. H. Choe, and J. H. Kim, J. Korean Phys. Soc. 49, 1967 (2006)
  77. 김용일, 윤남식, 한국진공학회지 17, 400 (2008) https://doi.org/10.5757/JKVS.2008.17.5.400

Cited by

  1. Numerical Modeling of a Rectangular Type Inductively Coupled Plasma System vol.45, pp.4, 2012, https://doi.org/10.5695/JKISE.2012.45.4.174