Browse > Article
http://dx.doi.org/10.5695/JKISE.2013.46.2.055

A Comparative Study of Superhard TiN Coatings Deposited by DC and Inductively Coupled Plasma Magnetron Sputtering  

Chun, Sung-Yong (Department of Advanced Materials Science and Engineering, Mokpo National University)
Publication Information
Journal of the Korean institute of surface engineering / v.46, no.2, 2013 , pp. 55-60 More about this Journal
Abstract
Superhard TiN coatings were fabricated by DC and ICP (inductively coupled plasma) assisted magnetron sputtering techniques. The effect of ICP power, ranging from 0 to 300 W, on coating microstructure, preferred orientation mechanical properties were systematically investigated with HR-XRD, SEM, AFM and nanoindentation. The results show that ICP power has a significant influence on coating microstructure and mechanical properties of TiN coatings. With the increasing of ICP power, coating microstructure evolves from the columnar structure of DC process to a highly dense one. Grain sizes of TiN coatings were decreased from 12.6 nm to 8.7 nm with increase of ICP power. The maximum nanohardness of 67.6 GPa was obtained for the coatings deposited at ICP power of 300 W. Preferred orientation in TiN coatings also vary with ICP power, exerting an effective influence on film nanohardness.
Keywords
Superhard; Inductively coupled plasma; ICP power; Crystal grain size; Residual stress;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 M. Griepentrog, B. Mackrodt, G. Mark, T. Linz, Surf. Coat. Tech., 74-75 (1995) 326.   DOI   ScienceOn
2 K. Oguri, H. Fujita, T. Arai, Thin Solid Films, 195 (1991) 77.   DOI   ScienceOn
3 M. Benmalek, P. Gimenez, J. P. Peyre, C. Tournier, Surf. Coat. Tech., 48 (1991) 181.   DOI   ScienceOn
4 M. G. Han, S. Y. Chun, J. Kor. Inst. Surf. Eng., 48 (2011) 342.
5 D. Y. Lee, C. W. Chung, Kor. Chem. Eng. Res., 46 (2008) 676.
6 C. S. Han, G. B, Chae, C. R, Lee, D. K. Choi, J. P. Shim, Kor. Chem. Eng. Res., 50 (2012) 118.   DOI   ScienceOn
7 N. D. Nam, J. G. Kim, W. S. Hwang, Thin Solid Films, 517 (2009) 4772.   DOI   ScienceOn
8 B. M. Koo, S. J. Jung, Y. H. Han, J. J. Lee, J. H. Joo, J. Kor. Inst. Surf. Eng., 37 (2004) 146.
9 D. K. Lee, J. J. Lee, J. H. Joo, Surf. Coat. Tech., 173-174 (2003) 1234.
10 J. J. Lee, J. H. Joo, Surf. Coat. Tech., 169-170 (2003) 353.   DOI   ScienceOn
11 B. D. Cullity, S. R. Stock, Elements of X-ray Diffraction, Prentice-Hall Inc., 3rd. (2001) 167.
12 S. Y. Chun, J. Kor. Ceram. Soc., 47 (2010) 479.   DOI   ScienceOn
13 Q. Kong, L. Ji, H. Li, X. Liu, Y. Wang, J. Chen, H. Zhou, Mater. Sci. Eng., B 176 (2011) 850.   DOI   ScienceOn
14 S. Tan, X. Zhang, X. Wu, F. Feng, J. Jiang, Thin Solid Films, 519 (2011) 2116.   DOI   ScienceOn
15 C. W. Zou, H. J. Wang, M. Li, C. S. Liu, L. P. Guo, D. J. Fu, Vacuum, 83 (2009) 1086.   DOI   ScienceOn
16 I. Petrov, L. Hultman, U. Helmersson, S. A. Barnett, J. E. Sundgren, J. E. Greene, Thin Solid Films, 169 (1989) 299.   DOI   ScienceOn
17 H. C. Barshilia, K. S. Rajam, Surf. Coat. Tech., 201 (2006) 1827.   DOI   ScienceOn
18 P. J. Kelly, T. V. Braucke, Z. Liu, R. D. Arnell, E. D. Doyle, Surf. Coat. Tech., 202 (2007) 774.   DOI   ScienceOn
19 R. D. Arnell, J. S. Colligon, K. F. Minnebaev, V. E. Yurasova, Vacuum, 47 (1996) 425.   DOI   ScienceOn
20 J. W. Nah, B. J. Kim, D. K. Lee, J. J. Lee, J. Vac. Sci. Technol. A., 17 (1999) 463.   DOI   ScienceOn
21 F. Elstner, A. Ehrlich, H. Giegengack, H. Kupfer, F. Richter, J. Vac. Sci. Technol. A., 12 (1994) 476.   DOI   ScienceOn
22 J. Kourtev, R. Pascova, E. Weißmantel, Thin Solid Films, 287 (1996) 202.   DOI   ScienceOn
23 M. H. Staia, E. S. Puchi, D. B. Lewis, J. Cawley, D. Morel, Surf. Coat. Tech., 86-87 (1996) 432.   DOI   ScienceOn
24 J. A. Sue, Surf. Coat. Technol., 61 (1993) 115.   DOI   ScienceOn
25 W. Li, X. He, H. Li, J. Appl. Phys., 75 (1994) 2002.   DOI   ScienceOn