DOI QR코드

DOI QR Code

A Comparative Study of Superhard TiN Coatings Deposited by DC and Inductively Coupled Plasma Magnetron Sputtering

DC 스퍼터법과 유도결합 플라즈마 마그네트론 스퍼터법으로 증착된 수퍼하드 TiN 코팅막의 물성 비교연구

  • Chun, Sung-Yong (Department of Advanced Materials Science and Engineering, Mokpo National University)
  • 전성용 (목포대학교 신소재공학과)
  • Received : 2013.02.20
  • Accepted : 2013.04.15
  • Published : 2013.04.30

Abstract

Superhard TiN coatings were fabricated by DC and ICP (inductively coupled plasma) assisted magnetron sputtering techniques. The effect of ICP power, ranging from 0 to 300 W, on coating microstructure, preferred orientation mechanical properties were systematically investigated with HR-XRD, SEM, AFM and nanoindentation. The results show that ICP power has a significant influence on coating microstructure and mechanical properties of TiN coatings. With the increasing of ICP power, coating microstructure evolves from the columnar structure of DC process to a highly dense one. Grain sizes of TiN coatings were decreased from 12.6 nm to 8.7 nm with increase of ICP power. The maximum nanohardness of 67.6 GPa was obtained for the coatings deposited at ICP power of 300 W. Preferred orientation in TiN coatings also vary with ICP power, exerting an effective influence on film nanohardness.

Keywords

References

  1. M. G. Han, S. Y. Chun, J. Kor. Inst. Surf. Eng., 48 (2011) 342.
  2. D. Y. Lee, C. W. Chung, Kor. Chem. Eng. Res., 46 (2008) 676.
  3. C. S. Han, G. B, Chae, C. R, Lee, D. K. Choi, J. P. Shim, Kor. Chem. Eng. Res., 50 (2012) 118. https://doi.org/10.9713/kcer.2012.50.1.118
  4. N. D. Nam, J. G. Kim, W. S. Hwang, Thin Solid Films, 517 (2009) 4772. https://doi.org/10.1016/j.tsf.2009.03.079
  5. B. M. Koo, S. J. Jung, Y. H. Han, J. J. Lee, J. H. Joo, J. Kor. Inst. Surf. Eng., 37 (2004) 146.
  6. D. K. Lee, J. J. Lee, J. H. Joo, Surf. Coat. Tech., 173-174 (2003) 1234.
  7. J. J. Lee, J. H. Joo, Surf. Coat. Tech., 169-170 (2003) 353. https://doi.org/10.1016/S0257-8972(03)00112-9
  8. B. D. Cullity, S. R. Stock, Elements of X-ray Diffraction, Prentice-Hall Inc., 3rd. (2001) 167.
  9. S. Y. Chun, J. Kor. Ceram. Soc., 47 (2010) 479. https://doi.org/10.4191/KCERS.2010.47.6.479
  10. Q. Kong, L. Ji, H. Li, X. Liu, Y. Wang, J. Chen, H. Zhou, Mater. Sci. Eng., B 176 (2011) 850. https://doi.org/10.1016/j.mseb.2011.04.015
  11. S. Tan, X. Zhang, X. Wu, F. Feng, J. Jiang, Thin Solid Films, 519 (2011) 2116. https://doi.org/10.1016/j.tsf.2010.10.067
  12. C. W. Zou, H. J. Wang, M. Li, C. S. Liu, L. P. Guo, D. J. Fu, Vacuum, 83 (2009) 1086. https://doi.org/10.1016/j.vacuum.2008.12.007
  13. I. Petrov, L. Hultman, U. Helmersson, S. A. Barnett, J. E. Sundgren, J. E. Greene, Thin Solid Films, 169 (1989) 299. https://doi.org/10.1016/0040-6090(89)90713-X
  14. H. C. Barshilia, K. S. Rajam, Surf. Coat. Tech., 201 (2006) 1827. https://doi.org/10.1016/j.surfcoat.2006.03.012
  15. P. J. Kelly, T. V. Braucke, Z. Liu, R. D. Arnell, E. D. Doyle, Surf. Coat. Tech., 202 (2007) 774. https://doi.org/10.1016/j.surfcoat.2007.07.047
  16. R. D. Arnell, J. S. Colligon, K. F. Minnebaev, V. E. Yurasova, Vacuum, 47 (1996) 425. https://doi.org/10.1016/0042-207X(95)00241-3
  17. J. W. Nah, B. J. Kim, D. K. Lee, J. J. Lee, J. Vac. Sci. Technol. A., 17 (1999) 463. https://doi.org/10.1116/1.581607
  18. F. Elstner, A. Ehrlich, H. Giegengack, H. Kupfer, F. Richter, J. Vac. Sci. Technol. A., 12 (1994) 476. https://doi.org/10.1116/1.579155
  19. J. Kourtev, R. Pascova, E. Weißmantel, Thin Solid Films, 287 (1996) 202. https://doi.org/10.1016/S0040-6090(96)08751-2
  20. M. H. Staia, E. S. Puchi, D. B. Lewis, J. Cawley, D. Morel, Surf. Coat. Tech., 86-87 (1996) 432. https://doi.org/10.1016/S0257-8972(96)02981-7
  21. J. A. Sue, Surf. Coat. Technol., 61 (1993) 115. https://doi.org/10.1016/0257-8972(93)90212-7
  22. W. Li, X. He, H. Li, J. Appl. Phys., 75 (1994) 2002. https://doi.org/10.1063/1.356299
  23. M. Griepentrog, B. Mackrodt, G. Mark, T. Linz, Surf. Coat. Tech., 74-75 (1995) 326. https://doi.org/10.1016/0257-8972(95)08369-3
  24. K. Oguri, H. Fujita, T. Arai, Thin Solid Films, 195 (1991) 77. https://doi.org/10.1016/0040-6090(91)90260-5
  25. M. Benmalek, P. Gimenez, J. P. Peyre, C. Tournier, Surf. Coat. Tech., 48 (1991) 181. https://doi.org/10.1016/0257-8972(91)90001-D

Cited by

  1. Characteristics of NbN Films Deposited on AISI 304 Using Inductively Coupled Plasma Assisted DC Magnetron Sputtering Method vol.46, pp.5, 2013, https://doi.org/10.5695/JKISE.2013.46.5.187
  2. Plasma Uniformity Analysis of Inductively Coupled Plasma Assisted Magnetron Sputtering by a 2D Voltage Probe Array vol.23, pp.4, 2014, https://doi.org/10.5757/ASCT.2014.23.4.161
  3. Effect of Inductively Coupled Plasma on the Microstructure, Structure and Mechanical Properties of VN Coatings vol.49, pp.4, 2016, https://doi.org/10.5695/JKISE.2016.49.4.376
  4. Microstructure, Crystal Structure and Mechanical Properties of VN Coatings Using Asymmetric Bipolar Pulsed dc Sputtering vol.49, pp.5, 2016, https://doi.org/10.5695/JKISE.2016.49.5.461