• Title/Summary/Keyword: Indole-3-acetic acid

Search Result 228, Processing Time 0.03 seconds

Isolation and Characterization of Phosphate Solubilizing Bacteria Pantoea Species as a Plant Growth Promoting Rhizobacteria (식물 생장 촉진 활성을 가진 인산분해 미생물 Pantoea 종의 분리 및 특성 규명)

  • Yun, Chang Yeon;Cheong, Yong Hwa
    • Journal of Life Science
    • /
    • v.26 no.10
    • /
    • pp.1163-1168
    • /
    • 2016
  • Plant growth-promoting rhizobacteria (PGPR) have gained worldwide importance and acceptance due to their agricultural benefits. These microorganisms are potential tools for sustainable agriculture, with effects on plant growth, biofertilization, induced systemic resistance, and biocontrol of plant pathogens. In this study, four different Pantoea species were isolated from field soil, and their plant growth-promoting characteristics were studied. Based on 16S rDNA gene sequencing analyses, the se were grouped into Pantoea ananatis, Pantoea citrea, Pantoea dispersa, Pantoea vagans and named as Pa1, Pc1, Pd1, Pv1, respectively. All of these strains have their ability for solubilization of insoluble phosphate depending on pH decrease at the range around pH 5 at 1days after inoculation and production of plant hormone indole acetic acid (IAA) with 85.3±16.3 μg/ml of Pa1, 183.9±16.8 μg/ml of Pc1, 28.8±17.3 μg/ml of Pd1 and 114.1±16.5 μg/ml of Pv1, respectively. Pa1, Pc1 and Pd1 also have high activity for production of gibberellin (GA3) hormone with 331.1±19.2 μg/ml of Pa1, 288.5±16.8 μg/ml of Pc1, 309.2±18.2 μg/ml of Pd1, but Pv1 does not. Furthermore, all these species have significantly promoted the growth of the lettuce seedling plants at the range around 32~37% for fresh weight and 10~15% for shoot length enhancement, so that these microbe could be used as a potential bio-fertilizer agents.

Characterization of Plant Growth-Promoting Traits of Free-Living Diazotrophic Bacteria and Their Inoculation Effects on Growth and Nitrogen Uptake of Crop Plants

  • Islam, Md. Rashedu;Madhaiyan, M.;Boruah, Hari P.Deka;Yim, Woo-Jong;Lee, Gill-Seung;Saravanan, V.S.;Fu, Qingling;Hu, Hongqing;Sa, Tongmin
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.10
    • /
    • pp.1213-1222
    • /
    • 2009
  • The search for diverse plant growth-promoting (PGP) diazotrophic bacteria is gaining momentum as efforts are made to exploit them as biofertilizers for various economically important crops. In the present study, 17 diazotrophic strains belonging to eight different genera isolated from rice paddy fields were screened for multiple PGP traits and evaluated for their inoculation effects on canola and rice plants. All of the strains tested positive for 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity and production of indole 3-acetic acid (IAA) and ammonia ($NH_3$). Additionally, four of the strains were able to solubilize phosphorus (P), five tested positive for zinc (Zn) solubilization and sulfur (S) oxidation, and eight strains produced siderophores. Based on the presence of multiple PGP traits, 10 strains were selected for inoculation studies. Treatment with Herbaspirillum sp. RFNB26 resulted in maximum root length (54.3%), seedling vigor, and dry biomass in canola, whereas Paenibacillus sp. RFNB4 exhibited the lowest activity under gnotobiotic conditions. However, under pot culture conditions, Paenibacillus sp. RFNB4 significantly increased plant height and dry biomass production by 42.3% and 29.5%, respectively. Canola plants and rhizosphere soils inoculated with Bacillus sp. RFNB6 exhibited significantly higher nitrogenase activity. In greenhouse experiments, Serratia sp. RFNB18 increased rice plant height by 35.1%, Xanthomonas sp. RFNB24 enhanced biomass production by 84.6%, and rice rhizosphere soils inoculated with Herbaspirillum sp. RFNB26 exhibited the highest nitrogenase activity. Our findings indicate that most of the selected strains possess multiple PGP properties that significantly improve the growth parameters of the two plants when tested under controlled conditions.

Micropropagation of Lillium Oriental Hybrid 'Casa Blanca' using Bulblet Sections with swollen Basal Plate in Bioreactor (생물반응기에서 저반부가 비대된 자구 절편체에 의한 오리엔탈 나리 'Casa Blanca' 의 대량증식)

  • 한봉희;예병우;구대희
    • Korean Journal of Plant Tissue Culture
    • /
    • v.28 no.3
    • /
    • pp.135-140
    • /
    • 2001
  • A series of studies were carried out to establish micropropagation system, using airlift bioreactors (ebb $\varepsilon$ flood type, 5 L), of Lilium oriental hybrid 'Casa Blanca'. The bulblets with swollen basal plate were formed from bulb scales, then proliferated to bulblet clusters with swollen basal plate. Finally normal bulblets were formed from the sections. Bulblet formation and proliferation with swollen basal plate were not accomplished entirely in liquid culture of 5 L airlift bioreactors, but leafy bulb scales grew vigorously. Bulblet clusters with swollen basal plate were proliferated by periodic immersion culture. Bulblet proliferation was not affected by light, but scale leaves grew under light. MS medium containing 2.0 mg/L benzyl adenine (BA) and 0.3 mg/L indole acetic acid (IAA) was favorable to the bulblet proliferation with swollen basal plate. In liquid culture of 5 L bioreactors, bulblets from bulblet sections with swollen basal plate grew vigorously on MS medium with 70 g/L sucrose. It was effective for bulblet growth to replace the new medium after 8 weeks in culture during 16 weeks of cultural period. 15 g injection of bulblet sections as a cultural material was suitable for bulblet growth in 5 L bioreactors.

  • PDF

Isolation and Characteristics of Bacteria Showing Biocontrol and Biofertilizing Activities (생물방제 및 생물비료 활성을 가지는 세균의 분리 및 특성)

  • Jung, Ho-Il;Kim, Keun-Ki;Park, Hyean-Cheal;Lee, Sang-Mong;Kim, Yong-Gyun;Kim, Hong-Sung;Lee, Cnung-Yeol;Son, Hong-Joo
    • Journal of Life Science
    • /
    • v.17 no.12
    • /
    • pp.1682-1688
    • /
    • 2007
  • To develop multifunctional microbial inoculant, microorganisms with antagonistic activity and biofertilizing activity were screened. Pantoea agglomerans and Bacillus megaterium from our laboratory culture collection, and strain MF12 from soil near poultry farm in Miryang were selected. On the basis of morphological, physiological studies and 16S rDNA sequence analysis, isolate MF12 was identified as the Bacillus pumilis. Three strains were studied for insoluble phosphate solubilization, indole-3-acetic acid (IAA) and siderophore production, ammonification ability, hydrolytic enzyme production and antifungal activity against phytopathogenic fungi. P. agglomerans did not produce any visible clear zone on agar plate containing 0.5% $Ca_3(PO_4){_2}$ as a sole phosphorus source. However, this strain could solubilize insoluble phosphate in liquid medium. All strains produced IAA ranged from $3{\sim}639{\mu}g/ml$ depending on culture time and had ammonification ability. Among three strains, only P. agglomerans produced siderophore. P. agglomerans produced pectinase and lipase, B. megaterium produced amylase, protease and lipase while B. pumilis produced protease and lipase. P. agglomerans showed antifungal activities against phytopathogenic fungi, Fusarium oxysporum and Colletotrichum gloeosporioides. B. pumilis showed antifungal activities against Botrytis cinerea, Sclerotinia sclerotiorum and Phythium ultimum.

Mass Cultivation and Characterization of Multifunctional Bacillus velezensis GH1-13 (복합기능성 Bacillus velezensis GH1-13 균주의 대량배양 최적화 및 특성)

  • Park, Jun-Kyung;Kim, JuEun;Lee, Chul-Won;Song, JaeKyeong;Seo, Sun-Il;Bong, Ki-Moon;Kim, Dae-Hyuk;Kim, Pyoung Il
    • Korean Journal of Organic Agriculture
    • /
    • v.27 no.1
    • /
    • pp.65-76
    • /
    • 2019
  • Bacillus genus are found abundantly in various sites and their secondary metabolites were used as potential agents in agriculture, notably plant growth promoting and bio-control. The objective of this study was to develop the culture conditions of GH1-13 strain including higher cell growth, stable endospore-forming and enhancement of potential agents which are related with plant growth promoting and phytopathogen suppression. The optimal carbon and nitrogen sources were determined by glucose and soy bean flour, respectively, then resulted in $7.5{\times}10^9cells/mL$, $6.8{\times}10^9\;endospore\;cells/mL$ and sporulation yield of 90% after 30 h cultivation in 500 L submerged fermenter at $37^{\circ}C$, pH 7.0. Cells and cell-free supernatant of GH1-13 strains showed the potent antifungal activity against phytopathogenic fungi of Colletotrichum gloeosporioides. It was also confirmed that indole-3-acetic acid (IAA) production of GH1-13 strain was greatly increased by addition of 0.3% tryptophan.

Screening of Bacterial Strains for Alleviating Drought Stress in Chili Pepper Plants (고추 식물의 건조 스트레스 완화를 위한 미생물 선발)

  • Kim, Sang Tae;Yoo, Sung-Je;Song, Jaekyeong;Weon, Hang-Yeon;Sang, Mee Kyung
    • Research in Plant Disease
    • /
    • v.25 no.3
    • /
    • pp.136-142
    • /
    • 2019
  • Drought stress is considered as one of major abiotic stresses; it leads to reduce plant growth and crop productivity. In this study, we selected bacterial strains for alleviating drought stress in chili pepper plants. As drought-tolerant bacteria, 28 among 447 strains were pre-selected by in vitro assays including growth in drought condition with polyethylene glycol and plant growth-promoting traits including production of 1-aminocyclopropane-1-carboxylate deaminase, indole-3-acetic acid and exopolysaccharide. Sequentially, 7 among pre-selected 28 strains were screened based on relative water content (RWC); GLC02 and KJ40, among seven strains were finally selected by RWC and malondialdehyde (MDA) in planta trials under an artificial drought condition by polyethylene glycol solution. Two strains GLC02 and KJ40 reduced drought stress in a natural drought condition as well as an artificial condition. Strains GLC02 or KJ40 increased shoot fresh weight, chlorophyll and stomatal conductance while they decreased MDA in chili pepper plants under a natural drought condition. However, two strains did not show biocontrol activity against diseases caused by Phytophthora capsici and Xanthomonas campestris pv. vesicatoria in chili pepper plants. Taken together, strains GLC02 or KJ40 can be used as bio-fertilizer for alleviation of drought stress in chili pepper plants.

Induced Systemic Resistance in plants by Bacillus sp. Isolated from Dok-do Islands (독도 자생식물 번행초로부터 분리한 바실러스 속 식물생장촉진근권 세균에 의한 식물병 저항성 유도)

  • Kim, Seung-Kun;Son, Jin-Soo;Kwon, Duck-Kee;Ghim, Sa-Youl
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.4
    • /
    • pp.596-602
    • /
    • 2019
  • In September 2017, the rhizospheric soil of Tetragonia tetragonoides (Pall.) Kuntze was further sampled. One hundred and thirty eight species of microorganisms were isolated from the soil. Indole-3-acetic acid (IAA) production, siderophore production, and phosphate degradation were examined in order to confirm bacterial growth from isolated microorganisms. As a result, most strains were able to produce auxins or siderophores and to solubilize phosphate. In addition, 138 isolated strains were treated with tobacco extract and conferred pathogen resistance to host plants upon treatment. As a result, 35 strains that were able to reduce pathophysiology by more the 60% were selected. Among them, 6 strains with high induced systemic resistance (ISR) activity were found. All of these strains belong to the genus Bacillus according to the 16S rDNA sequence analysis. Bacillus aryabhattai KUDC6619 showed outstanding effects with reduced infection in tobacco and pepper plants. Probably, these Bacillus species play a beneficial role by association with T. tetragonoides for its survival in the harsh conditions found on the island of Dokdo.

Characterization of Multifunctional Bacillus sp. GH1-13 (복합기능성 Bacillus sp. GH1-13 균주의 특징)

  • Kim, Sang Yoon;Sang, Mee Kyung;Weon, Hang-Yeon;Jeon, Young-Ah;Ryoo, Jae Hwan;Song, Jaekyeong
    • The Korean Journal of Pesticide Science
    • /
    • v.20 no.3
    • /
    • pp.189-196
    • /
    • 2016
  • Several microorganisms in particular Bacillus subtilis group have been isolated from diverse places such as soils and the gastrointestinal tract of ruminants etc., and used as biocontrol agent against various plant pathogens and utilized as plant growth promoting agents. Among them, Bacillus is well known as one of the most useful bacteria for biocontrol and plant growth promotion. Bacterium GH1-13 was isolated from a reclaimed paddy field in Wando Island and identified as Bacillus velezensis using phylogenetic analysis on the basis of 16S rRNA and gyrB gene. It was confirmed that GH1-13 produced indole acetic acid (IAA) associated with promoted growth of rice root. GH1-13 showed characteristics of antagonization against the main pathogen of rice as well as diverse pathogenic fungi. GH1-13 had biosynthetic genes, bacillomycin, bacilycin, fengycin, iturin, and surfactin which are considered to be associated closely with inhibition of growth of pathogenic fungi and bacteria. This study showed that GH1-13 could be used as a multifunctional agent for biocontrol and growth promotion of crop.

Antifungal activity of Streptomyces costaricanus HR391 against some plant-pathogenic fungi (여러 식물병원성 진균을 억제하는 Streptomyces costaricanus HR391의 항진균능)

  • Kim, Hae-Ryoung;Song, Hong-Gyu
    • Korean Journal of Microbiology
    • /
    • v.52 no.4
    • /
    • pp.437-443
    • /
    • 2016
  • In this study Streptomyces strains were isolated from soils and their antifungal activities and involved mechanisms were investigated. Among over 400 isolates of actinomycetes, Streptomyces costaricanus HR391 was selected as a potential antagonist to control several plant-pathogenic fungi. S. costaricanus HR391 inhibited mycelial growth of Fusarium oxysporum f. sp. raphani, F. oxysporum f. sp. niveum, F. oxysporum f. sp. lycopersici, and Rhizoctonia solani by 26.5, 26.2, 21.2, and 23.8%, respectively compared to those of uninoculated control after 7-day incubation on PDB medium. S. costaricanus HR391 produced $89{\mu}M$ of siderphore, and showed fungal cell wall-degrading activity including $0.46{\mu}mol/min/mg$ of chitinase and $0.83{\mu}mol/min/mg$ of ${\beta}$-1,3 glucanase. S. costaricanus HR391 secreted 87.49 mg/L of rhamnolipid, and produced 9.49 mg/L and 4.3 mM of lipopeptide, iturin A and surfactin, respectively, all they are membrane-disrupting biosurfactants. It also produced antimicrobial peptide and antibiotics phenazine. In addition to antifungal substances, S. costaricanus HR391 secreted plant growth-promoting phytohormones, zeatin, gibberellins and IAA. These results suggest that S. costaricanus HR391 may be utilized as an environment-friendly biocontrol agent against some important pathogenic fungi.

Recent Research Progress in the Microbial Production of Aromatic Compounds Derived from L-Tryptophan (미생물을 이용한 L-트립토판 유래 방향족 화합물 생산 최근 연구)

  • Lee, Ji-yeong;Lee, Jin-ho
    • Journal of Life Science
    • /
    • v.30 no.10
    • /
    • pp.919-929
    • /
    • 2020
  • Aromatic compounds are widely used in the chemical, food, polymer, cosmetic, and pharmaceutical industries and are produced by mainly chemical synthesis using benzene, toluene, and xylene or by plant extraction methods. Due to many rising threats, including the depletion of fossil fuels, global warming, the strengthening of international environmental regulations, and the excessive harvesting of plant resources, the microbial production of aromatic compounds using renewable biomass is regarded as a promising alternative. By integrating metabolic engineering with synthetic and systems biology, artificial biosynthetic pathways have been reconstituted from L-tryptophan biosynthetic pathway in relevant microorganisms, such as Escherichia coli and Corynebacterium glutamicum, enabling the production of a variety of value-added aromatic compounds, such as 5-hydroxytryptophan, serotonin, melatonin, 7-chloro-L-tryptophan, 7-bromo-L-tryptophan, indigo, indirubin, indole-3-acetic acid, violacein, and dexoyviolacein. In this review, we summarize the characteristics, usage, and biosynthetic pathways of these aromatic compounds and highlight the latest metabolic engineering strategies for the microbial production of aromatic compounds and suitable solution strategies to overcome problems in increasing production titers. It is expected that strain development based on systems metabolic engineering and the optimization of media and bioprocesses using renewable biomass will enable the development of commercially viable technologies for the microbial production of many aromatic compounds.