Browse > Article
http://dx.doi.org/10.4014/jmb.0903.03028

Characterization of Plant Growth-Promoting Traits of Free-Living Diazotrophic Bacteria and Their Inoculation Effects on Growth and Nitrogen Uptake of Crop Plants  

Islam, Md. Rashedu (Department of Agricultural Chemistry, Chungbuk National University)
Madhaiyan, M. (Department of Agricultural Chemistry, Chungbuk National University)
Boruah, Hari P.Deka (Department of Agricultural Chemistry, Chungbuk National University)
Yim, Woo-Jong (Department of Agricultural Chemistry, Chungbuk National University)
Lee, Gill-Seung (Department of Agricultural Chemistry, Chungbuk National University)
Saravanan, V.S. (Department of Microbiology, Indira Gandhi College of Arts and Science)
Fu, Qingling (Key Laboratory of Subtropical Agricultural Resource and Environment, Ministry of Agriculture, Huazhong Agricultural University)
Hu, Hongqing (Key Laboratory of Subtropical Agricultural Resource and Environment, Ministry of Agriculture, Huazhong Agricultural University)
Sa, Tongmin (Department of Agricultural Chemistry, Chungbuk National University)
Publication Information
Journal of Microbiology and Biotechnology / v.19, no.10, 2009 , pp. 1213-1222 More about this Journal
Abstract
The search for diverse plant growth-promoting (PGP) diazotrophic bacteria is gaining momentum as efforts are made to exploit them as biofertilizers for various economically important crops. In the present study, 17 diazotrophic strains belonging to eight different genera isolated from rice paddy fields were screened for multiple PGP traits and evaluated for their inoculation effects on canola and rice plants. All of the strains tested positive for 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity and production of indole 3-acetic acid (IAA) and ammonia ($NH_3$). Additionally, four of the strains were able to solubilize phosphorus (P), five tested positive for zinc (Zn) solubilization and sulfur (S) oxidation, and eight strains produced siderophores. Based on the presence of multiple PGP traits, 10 strains were selected for inoculation studies. Treatment with Herbaspirillum sp. RFNB26 resulted in maximum root length (54.3%), seedling vigor, and dry biomass in canola, whereas Paenibacillus sp. RFNB4 exhibited the lowest activity under gnotobiotic conditions. However, under pot culture conditions, Paenibacillus sp. RFNB4 significantly increased plant height and dry biomass production by 42.3% and 29.5%, respectively. Canola plants and rhizosphere soils inoculated with Bacillus sp. RFNB6 exhibited significantly higher nitrogenase activity. In greenhouse experiments, Serratia sp. RFNB18 increased rice plant height by 35.1%, Xanthomonas sp. RFNB24 enhanced biomass production by 84.6%, and rice rhizosphere soils inoculated with Herbaspirillum sp. RFNB26 exhibited the highest nitrogenase activity. Our findings indicate that most of the selected strains possess multiple PGP properties that significantly improve the growth parameters of the two plants when tested under controlled conditions.
Keywords
Free-living diazotroph; nitrogen fixation; nifH; PGP; ACC deaminase; rice;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
Times Cited By Web Of Science : 7  (Related Records In Web of Science)
연도 인용수 순위
1 Dell'Amico, E., L. Cavalca, and V. Andreoni. 2005. Analysis of rhizobacterial communities in perennial Graminaceae from polluted water meadow soil, and screening of metal-resistant, potentially plant growth-promoting bacteria. FEMS Microbiol. Ecol. 52: 153-162   DOI   ScienceOn
2 Lifshitz, R., J. W. Kloepper, M. Kozlowski, C. Simonson, J. Carlson, E. M. Tipping, and I. Zaleska. 1987. Growth promotion of canola (rapeseed) seedlings by a strain of Pseudomonas putida under gnotobiotic conditions. Can. J. Microbiol. 33:390-395   DOI
3 Lorck, H. 1948. Production of hydrocyanic acid by bacteria. Physiol. Plant 1: 142-146   DOI
4 Miles, A. A. and S. S. Misra. 1938. The estimation of the bacterial powder of blood. J. Hygiene (Cambridge) 38: 732-749   DOI
5 Mirza, M. S., S. Mehnaz, P. Normand, C. Prigent-Combaret, Y. Mo$\ddot{e}$nne-Lyccoz, Ren $\grave{e}$ Bally, and K. A. Malik. 2006. Molecular characterization and PCR detection of a nitrogen-fixing Pseudomonas strain promoting rice growth. Biol. Fertil. Soils 43: 163-170   DOI   ScienceOn
6 Oliveira, A. L. M., S. Urquiaga, J. D$\ddot{o}$bereiner, and J. I. Baldani. 2002. The effect of inoculating endophytic $N_2$-fixing bacteria on micropropagated sugarcane plants. Plant Soil 242: 205-215   DOI   ScienceOn
7 Reis, V. M., F. I. Olivares, and J. Dobereiner. 1994. Improved methodology for isolation of Acetobacter diazotrophicus and confirmation of its endophytic habitat. World J. Microbiol. Biotechnol. 10: 101-104
8 Shaharoona, B., G. M. Jamro, Z. A. Zahir, M. Arshad, and K. S. Memon. 2007. Effectiveness of various Pseudomonas spp. and Burkholderia caryophylli containing ACC-deaminase for improving growth and yield of wheat (Triticum aestivum L.). J. Microbiol. Biotechnol. 17: 1300-1307   ScienceOn
9 Cattelan, A. J., P. G. Hartel, and J. J. Fuhrmann. 1999. Screening for plant growth promoting rhizobacteria to promote early soybean growth. Soil Sci. Soc. Am. J. 63: 1670-1680   DOI   ScienceOn
10 Atkin, C. L., J. B. Neilands, and H. J. Phaff. 1970. Rhodotorulic acid from species of Leucosporidium, Rhodosporidium, Rhodotorula, Sporidiobolus, and Sporobolomyces, and a new alanine-containing ferrichrome from Cryptococcus melibiosum. J. Bacteriol. 103: 722-733   PUBMED
11 Choudhury, A. T. M. A. and I. R. Kennedy. 2004. Prospects and potentials for systems of biological nitrogen fixation. Biol. Fertil. Soils 39: 219-227   DOI   ScienceOn
12 Kim, C., Mih$\acute{a}$ly L. Kecsk$\acute{e}$s, R. J. Deaker, K. Gilchrist, P. B. New, I. R. Kennedy, S. Kim, and T. M. Sa. 2005. Wheat root colonization and nitrogenase activity by Azospirillum isolates from crop plants in Korea. Can. J. Microbiol. 51: 948-956   DOI   ScienceOn
13 Belimov, A. A., V. I. Safronova, T. A. Sergeyeva, T. N. Egorova, V. A. Matveyeva, and V. E. Tsyganov. 2001. Characterization of plant growth-promoting rhizobacteria isolated from polluted soils and containing 1-aminocyclopropane-1-carboxylate deaminase. Can. J. Microbiol. 47: 642-652   DOI   ScienceOn
14 Pikovskaya, R. I. 1948. Mobilization of phosphorus in soil in connection with vital activity of some microbial species. Mikrobiologiya 17: 362-370
15 Saravanan, V. S., M. Madhaiyan, and M. Thangaraju. 2007. Solubilization of zinc compounds by the diazotrophic, plant growth promoting bacterium Gluconacetobacter diazotrophicus. Chemosphere 66: 1794-1798   DOI   ScienceOn
16 Wani, P. A., M. S. Khan, and A. Zaidi. 2007. Chromium reduction, plant growth-promoting potentials, and metal solubilization by Bacillus sp. isolated from alluvial soil. Curr. Microbiol. 54:237-243   DOI   ScienceOn
17 Vial, L., M. C. Groleau, V. Dekimpe, and E. Deziel. 2007. Burkholderia diversity and versatility: An inventory of the extracellular products. J. Microbiol. Biotechnol. 17: 1407-1429   과학기술학회마을   ScienceOn
18 Mirza, M. S., G. Rasul, S. Mehnaz, J. K. Ladha, R. B. So, S. Ali, and K. A. Malik. 2000. Beneficial effects of inoculated nitrogen-fixing bacteria on rice, pp. 191-204. In J. K. Ladha and P. M. Reddy (eds.). The Quest for Nitrogen Fixation in Rice. International Rice Research Institute, Los Ba$\~{n}$os, The Philippines
19 Wu, S. C., Z. H. Caob, Z. G. Lib, K. C. Cheunga, and M. H. Wonga. 2005. Effects of biofertilizer containing N-fixer, P and K solubilizers and AM fungi on maize growth: A greenhouse trial. Geoderma 125: 155-166   DOI   ScienceOn
20 Arnow, E. 1937. Colorimetric estimation of the components of 3,4-dihydroxyphenylalanine-tyrosine mixtures. J. Biol. Chem. 118: 531-537
21 Siddiqui, Z. A. 2005. PGPR: Prospective biocontrol agents of plant pathogens, pp. 111-142 In: PGPR: Biocontrol and Biofertilization Springer, The Netherlands
22 Ueda, T., Y. Suga, N. Yahiro, and T. Matsuguchi. 1995. Remarkable $N_2$-fixing bacterial diversity detected in rice roots by molecular evolutionary analysis of nifH gene sequences. J. Bacteriol. 177: 1414-1417   PUBMED   ScienceOn
23 Wainright, M. 1984. Sulfur oxidation in soils. Adv. Agron. 37:350-392
24 Cocking, E. C. 2003. Endophytic colonization of plant roots by nitrogen-fixing bacteria. Plant Soil 252: 169-175   DOI   ScienceOn
25 Li, J., H. Daniel, T. C. Charles, and B. R. Glick. 2000. An ACC deaminase minus mutant of Enterobacter cloacae UW4 no longer promotes root elongation. Curr. Microbiol. 41: 101-105   DOI   ScienceOn
26 Dobbelaere, S., J. Vanderleyden, and Y. Okon. 2003. Plant growth-promoting effects of diazotrophs in the rhizosphere. Crit. Rev. Plant Sci. 22: 107-149   DOI   ScienceOn
27 Baldani, V. L. D., J. I. Baldani, and J. D$\ddot{o}$bereiner. 2000. Inoculation of rice plants with the endophytic diazotrophs Herbaspirillum seropedicae and Burkholderia spp. Biol. Fertil. Soils 30: 485-491   DOI   ScienceOn
28 Elbeltagy, A., K. Nishioka, T. Sato, H. Suzuki, B. Ye, T. Hamada, T. Isawa, H. Mitsui, and K. Minamisawa. 2001. Endophytic colonization and in planta nitrogen fixation by a Herbaspirillum sp. isolated from wild rice species. Appl. Environ. Microbiol. 67: 5285-5293   DOI   ScienceOn
29 Tr$\hat{a}$n Van, V., O. Berge, S. Ng$\hat{o}$ K$\hat{e}$. Ke, J. Balandreau, and T. Heulin. 2000. Repeated beneficial effects of rice inoculation with a strain of Burkholderia vietnamiensis on early and late yield components in low fertility sulphate acid soils of Vietnam. Plant Soil 218: 273-284   DOI
30 Glick, B. R., B. Todorovic, J. Czarny, Z. Cheng, J. Duan, and B. McConkey Guiamet, Juan Jos$\acute{e}$ 2007. Promotion of plant growth by bacterial ACC deaminase. Crit. Rev. Plant Sci. 26: 1-16   DOI   ScienceOn
31 Piao, Z., Z. Cui, B. Yin, J. Hu, C. Zhou, G. Xie, B. Su, and S. Yin. 2005. Changes in acetylene reduction activities and effects of inoculated rhizosphere nitrogen-fixing bacteria on rice. Biol. Fertil. Soils 41: 371-378   DOI   ScienceOn
32 Govindarajan, M., J. Balandreau, S. W. Kwon, H. Y. Weon, and C. Lakshminarasimhan. 2008. Effects of the inoculation of Burkholderia vietnamensis and related endophytic diazotrophic bacteria on grain yield of rice. Microb. Ecol. 55: 21-37   DOI   ScienceOn
33 Rodr $\acute{i}$   DOI   ScienceOn
34 Yim, W. J., S. Poonguzhali, M. Madhaiyan, and T. M. Sa. 2009. Characterization of plant-growth promoting diazotrophic bacteria isolated from field-grown Chinese cabbage under different fertilization conditions. J. Microbiol. 47: 147-155   DOI   ScienceOn
35 Kennedy, I. R., A. T. M. A. Choudhury, and Mih$\acute{a}$ly L. Keesk$\acute{e}$s. 2004. Non-symbiotic bacterial diazotrophs in crop-farming systems: Can their potential fot plant growth promotion be better exploited? Soil Biol. Bioche. 36: 1229-1244   DOI   ScienceOn
36 Bashan, Y. and G. Holguin. 1998. Proposal for the division of plant growth-promoting rhizobacteria into two classifications:Biocontrol-PGPB (plant growth-promoting bacteria) and PGPB. Soil Biol. Biochem. 30: 1225-1228   DOI   ScienceOn
37 Penrose, D. M. and B. R. Glick. 2003. Methods for isolating and characterizing ACC deaminase-containing plant growth promoting rhizobacteria. Physiol. Plant 118: 10-15   DOI   ScienceOn
38 Lucy, M., E. Reed, and B. R. Glick. 2004. Application of plant growth-promoting rhizobacteria. Antonie Van Leeuwenhoek 86:1-25   DOI   ScienceOn
39 Balandreau, J., V. Viallard, B. Cournoyer, T. Coenye, S. Laevens, and P. Vandamme. 2001. Burkholderia cepacia genomovar III is a common plant-associated bacterium. Appl. Environ. Microbiol. 67: 982-985   DOI   ScienceOn
40 Kirchhof, G., V. M. Reis, J. I. Baldani, B. Eckert, J. D$\ddot{o}$bereiner, and A. Hartmann. 1997. Occurence, physiological and molecular analysis of endophytic diazotrophic bacteria in gramineous energy plants. Plant Soil 194: 45-55   DOI   ScienceOn
41 Schwyn, B. and J. B. Neilands. 1987. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 160: 47-56   DOI   ScienceOn
42 Estrada-De Los Santos, P., Roc$\acute{i}$o Bustillos-Cristales, and Jes$\acute{u}$s . Caballero-Mellado. 2001. Burkholderia, a genus rich in plantassociated nitrogen fixers with wide environmental and geographic distribution. Appl. Environ. Microbiol. 67: 2790-2798   DOI   PUBMED   ScienceOn
43 Anandham, R., P. Indiragandhi, M. Madhaiyan, J. Chung, K. Y. Ryu, H. J. Jee, and T. M. Sa. 2009. Thiosulfate oxidation and mixotrophic growth of Methylobacterium goesingense and Methylobacterium fujisawaense. J. Microbiol. Biotechnol. 19:17-22
44 Cvijanovic, D., G. Cvijanovic, and J. Subic. 2006. Ecological, economic and marketing aspects of the application of biofertilizers in the production of organic food. Economic and Agriculture year, 53 Special edition UDC 631.147:631.847 YU ISSN 0352-3462, 39-44
45 Mahadevappa, M. and V. V. Shenoy. 2000. Towards nitrogen fixing rice (Oryza sativa). Adv. Agric. Res. India 13: 131-139
46 Poonguzhali, S., M. Madhaiyan, and T. M. Sa. 2008. Isolation and identification of phosphate solubilizing bacteria from Chinese cabbage and their effect on growth and phosphorus utilization of plants. J. Microbiol. Biotechnol. 18: 773-777   ScienceOn
47 Hameeda, B., G. Harini, O. P. Rupela, S. P. Wani, and G. Reddy. 2008. Growth promotion of maize by phosphate solubilizing bacteria isolated from composts and macrofauna. Microbiol. Res. 163: 234-242   DOI   ScienceOn