Browse > Article
http://dx.doi.org/10.5352/JLS.2020.30.10.919

Recent Research Progress in the Microbial Production of Aromatic Compounds Derived from L-Tryptophan  

Lee, Ji-yeong (Major in Food Science & Biotechnology, School of Food Biotechnology & Nutrition, Kyungsung University)
Lee, Jin-ho (Major in Food Science & Biotechnology, School of Food Biotechnology & Nutrition, Kyungsung University)
Publication Information
Journal of Life Science / v.30, no.10, 2020 , pp. 919-929 More about this Journal
Abstract
Aromatic compounds are widely used in the chemical, food, polymer, cosmetic, and pharmaceutical industries and are produced by mainly chemical synthesis using benzene, toluene, and xylene or by plant extraction methods. Due to many rising threats, including the depletion of fossil fuels, global warming, the strengthening of international environmental regulations, and the excessive harvesting of plant resources, the microbial production of aromatic compounds using renewable biomass is regarded as a promising alternative. By integrating metabolic engineering with synthetic and systems biology, artificial biosynthetic pathways have been reconstituted from L-tryptophan biosynthetic pathway in relevant microorganisms, such as Escherichia coli and Corynebacterium glutamicum, enabling the production of a variety of value-added aromatic compounds, such as 5-hydroxytryptophan, serotonin, melatonin, 7-chloro-L-tryptophan, 7-bromo-L-tryptophan, indigo, indirubin, indole-3-acetic acid, violacein, and dexoyviolacein. In this review, we summarize the characteristics, usage, and biosynthetic pathways of these aromatic compounds and highlight the latest metabolic engineering strategies for the microbial production of aromatic compounds and suitable solution strategies to overcome problems in increasing production titers. It is expected that strain development based on systems metabolic engineering and the optimization of media and bioprocesses using renewable biomass will enable the development of commercially viable technologies for the microbial production of many aromatic compounds.
Keywords
Aromatic compound; L-tryptophan; metabolic engineering; microbial production;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Ameria, S. P. L., Jung, H. S., Kim, H. S., Han, S. S., Kim, H. S. and Lee, J. H. 2015. Characterization of a flavin-containing monooxygenase from Corynebacterium glutamicum and its application to production of indigo and indirubin. Biotechnol. Lett. 37, 1637-1644.   DOI
2 Arnao, M. B. and Hernandez-Ruiz, J. 2018. Melatonin and its relationship to plant hormones. Ann. Bot. 121, 195-207.   DOI
3 Veldmann, K. H., Minges, H., Sewald, N., Lee, J. H. and Wendisch, V. F. 2019. Metabolic engineering of Corynebacterium glutamicum for the fermentative production of halogenated tryptophan. J. Biotechnol. 291, 7-16.   DOI
4 Choi, H. S., Kim, J. K., Cho, E. H., Kim, Y. C., Kim, J. I. and Kim, S. W. 2003. A novel flavin-containing monooxygenase from Methylophaga sp. strain SK1 and its indigo synthesis in Escherichia coli. Biochem. Biophys. Res. Commun. 306, 930-936.   DOI
5 Byeon, Y. and Back, K. W. 2016. Melatonin production in Escherichia coli by dual expression of serotonin N-acetyltransferase and caffeic acid O-methyltransferase. Appl. Microbiol. Biotechnol. 100, 6683-6691.   DOI
6 Cao, M., Gao, M., Suasteguia, M., Mei, Y. and Shao, Z. 2020. Building microbial factories for the production of aromatic amino acid pathway derivatives: From commodity chemicals to plant-sourced natural products. Metab. Eng. 58, 94-132.   DOI
7 Chen, Y., Liu, Y., Ding, D., Cong, L. and Zhang, D. 2018. Rational design and analysis of an Escherichia coli strain for high-efficiency tryptophan production. J. Ind. Microbiol. Biotechnol. 45, 357-367.   DOI
8 Du, L., Zhang, Z., Xu, Q. and Chen, N. 2019. Central metabolic pathway modification to improve L-tryptophan production in Escherichia coli. Bioengineered 10, 59-70.   DOI
9 Du, J., Yang, D., Luo, Z. W. and Lee, S. Y. 2018. Metabolic engineering of Escherichia coli for the production of indirubin from glucose. J. Biotechnol. 267, 19-28.   DOI
10 Eisenbrand, G., Hippe, F., Jakobs, S. and Muehlbeyer, S. 2004. Molecular mechanisms of indirubin and its derivatives: novel anticancer molecules with their origin in traditional Chinese phytomedicine. J. Cancer Res. Clin. Oncol. 130, 627-635.   DOI
11 Guo, D., Kong, S., Chu, X., Li, Xun. and Pan, H. 2019. De novo biosynthesis of indole-3-acetic acid in engineered Escherichia coli. J. Agric. Food Chem. 67, 8186-8190.   DOI
12 Hsu, T. M., Welner, D. H., Russ, Z. N., Cervantes, B., Prathuri, R. L., Adams, P. D. and Dueber, J. E. 2018. Employing a biochemical protecting group for a sustainable indigo dyeing strategy. Nat. Chem. Biol. 14, 256-261.   DOI
13 Wang, H., Liu, W., Shi, F., Huang, L., Lian, J., Qu, L., Cai, J. and Xu, Z. 2018. Metabolic pathway engineering for high-level production of 5-hydroxytryptophan in Escherichia coli. Metab. Eng. 48, 279-287.   DOI
14 Zhou, N. Y., Al-Dulayymi, J., Baird, M. S. and Williams, P. A. 2002. Salicylate 5-hydroxylase from Ralstonia sp. strain U2: a monooxygenase with close relationships to and shared electron transport proteins with naphthalene dioxygenase. J. Bacteriol. 184, 1547-1555.   DOI
15 Zhou, Y., Fang, M. Y., Li, G., Zhang, C. and Xing, X. H. 2018. Enhanced production of crude violacein from glucose in Escherichia coli by overexpression of rate-limiting key enzyme(s) involved in violacein biosynthesis. Appl. Biochem. Biotechnol. 186, 909-916.   DOI
16 Hammer, P. E., Hill, D. S., Lam, S. T., Van Pee, K. H. and Ligon, J. M. 1997. Four genes from Pseudomonas fluorescens that encode the biosynthesis of pyrrolnitrin. Appl. Environ. Microbiol. 63, 2147-2154.   DOI
17 Han, G. H., Gim, G. H., Kim, W., Seo, S. I. and Kim, S. W. 2012. Enhanced indirubin production in recombinant Escherichia coli harboring a flavin-containing monooxygenase gene by cysteine supplementation. J. Biotechnol. 164, 179-187.   DOI
18 Huccetogullari, D., Luo, Z. W. and Lee, S. Y. 2019. Metabolic engineering of microorganisms for production of aromatic compounds. Microb. Cell Fact. 18, 41.   DOI
19 Ikeda, M. and Takeno, S. 2020. Recent advances in amino acid production. In: Inui M., Toyoda K. (eds) Corynebacterium glutamicum. Microbiology Monographs, vol 23. pp. 175-226, Springer, Cham, Switzerland.
20 Jung, H. S., Jung, H. B., Kim, H. S., Kim, C. G. and Lee, J. H. 2018. Protein engineering of flavin-containing monooxygenase from Corynebacterium glutamicum for improved production of indigo and indirubin. J. Life Sci. 28, 656-662.   DOI
21 Kang, M. S. and Lee, J. H. 2009. Cloning and expression of indole oxygenase gene derived from Rhodococcus sp. RHA1. Kor. J. Microbiol. Biotechnol. 37, 197-203.
22 Kim, J., Lee, J., Lee, P. G., Kim, E. J., Kroutil, W. and Kim, B. G. 2019. Eluciding cysteine-assisted synthesis of indirubin by a flavin-containing monooxygenase. ACS Catal. 9, 9539-9544.   DOI
23 Lee, J. H. and Wendisch, V. F. 2017b. Production of amino acids-Genetic and metabolic engineering approaches. Bioresour. Technol. 245, 1575-1587.   DOI
24 Kim, Y. M., Kwak, M. H., Kim, H. S. and Lee, J. H. 2019. Production of indole-3-acetate in Corynebacterium glutamicum by heterologous expression of the indole-3-pyruvate pathway genes. Microbiol. Biotechnol. Lett. 47, 242-249.   DOI
25 Koguchi, Y., Kohno, J., Nishio, M., Takahashi, K., Okuda, T., Ohnuki, T. and Komatsubara, S. 2000. TMC-94A, B, C, and D, novel proteasome inhibitors produced by Apiospora montagnei Sacc. TC 1093. Taxonomy, production, isolation, and biological activities. J. Antibiot. 53, 105-109.   DOI
26 Kubota, T., Tanaka, Y., Takemoto, N., Watanabe, A., Hiraga, K., Inui, M. and Yukawa, H. 2014. Chorismate-dependent transcriptional regulation of quinate/shikimate utilization genes by LysR-type transcriptional regulator QsuR in Corynebacterium glutamicum: carbon flow control at metabolic branch point. Mol. Microbiol. 92, 356-368.   DOI
27 Lee, J. H. 2009. Research trend about the development of white biotech-based aromatic compounds. Kor. J. Microbiol. Biotechnol. 37, 306-315.
28 Lee, J. H. and Wendisch, V. F. 2017a. Biotechnological production of aromatic compounds of the extended shikimate pathway from renewable biomass. J. Biotechnol. 257, 211-221.   DOI
29 Lin, Y., Sun, X., Yuan, Q. and Yan, Y. 2014. Engineering bacterial phenylalanine 4-hydroxylase for microbial synthesis of human neurotransmitter precursor 5-hydroxytryptophan. ACS Synth. Biol. 3, 497-505.   DOI
30 McKinney, J., Knappskog, P. M., Pereira, J., Ekern, T., Toska, K., Kuitert, B. B., Levine, D., Gronenborn, A. M., Martinez, A. and Haavik, J. 2004. Expression and purification of human tryptophan hydroxylase from Escherichia coli and Pichia pastoris. Protein Expr. Purif. 33, 185-194.   DOI
31 Mora-Villalobos, J. A. and Zeng, A. P. 2018. Synthetic pathway and processes for effective production of 5-hydroxytryptophan and serotonin from glucose in Escherichia coli. J. Biol. Eng. 12, 3.   DOI
32 Spaepen, S., Vanderleyden, J. and Remans, R. 2007. Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol. Rev. 31, 425-448.   DOI
33 Nishizawa, T., Aldrich, C. C. and Sherman, A. D. 2005. Molecular analysis of the rebeccamycin L-amino acid oxidase from Lechevalieria aerocolonigenes ATCC 39243. J. Bacteriol. 187, 2084-2092.   DOI
34 Pawar, S., Chaudhari, A., Prabha, R., Shukla, R. and Singh, D. P. 2019. Microbial pyrrolnitrin: Natural metabolite with immense practical utility. Biomolecules 9, 443.   DOI
35 Rodrigues, A. L., Trachtmann, N., Becker, J., Lohanatha, A. F., Blotenberg, J., Bolten, C. J., Korneli, C., de Souza Lima, A. O., Porto, L. M., Sprenger, G. A. and Wittmann, C. 2013. Systems metabolic engineering of Escherichia coli for production of the antitumor drugs violacein and deoxyviolacein. Metab. Eng. 20, 29-41.   DOI
36 Romasi, E. F. and Lee, J. H. 2013. Development of indole-3-acetic acid-producing Escherichia coli by functional expression of IpdC, AspC, and Iad1. J. Microbiol. Biotechnol. 23, 1726-1736.   DOI
37 Spaepen, S. and Vanderleyden, J. 2011. Auxin and plant-microbe interactions. Cold Spring Harb. Perspect. Biol. 3, a001438.   DOI
38 Sun, H., Zhao, D., Xiong, B., Zhang, C. and Bi, C. 2016. Engineering Corynebacterium glutamicum for violacein hyper production. Microb. Cell Fact. 15, 148.   DOI
39 van Pee, K. H. and Holzer, M. 1999. Specific enzymatic chlorination of tryptophan and tryptophan derivatives. Adv. Exp. Med. Biol. 467, 603-609.   DOI
40 Veldmann, K. H., Dachwitz, S., Risse, J. M., Lee, J. H., Sewald, N. and Wendisch, V. F. 2019. Bromination of L-tryptophan in a fermentative process with Corynebacterium glutamicum. Front. Bioeng. Biotechnol. 7, 219.   DOI