DOI QR코드

DOI QR Code

복합기능성 Bacillus velezensis GH1-13 균주의 대량배양 최적화 및 특성

Mass Cultivation and Characterization of Multifunctional Bacillus velezensis GH1-13

  • 박준경 ((재)농축산용미생물산업육성지원센터) ;
  • 김주은 (전남대학교 자연과학대학 화학과) ;
  • 이철원 (전남대학교 자연과학대학 화학과) ;
  • 송재경 (국립농업과학원 농업생물부 농업미생물과) ;
  • 서선일 ((재)농축산용미생물산업육성지원센터) ;
  • 봉기문 (국립환경과학원 영산강물환경연구소) ;
  • 김대혁 ((재)농축산용미생물산업육성지원센터, 전북대학교 자연과학대학 분자생물학과) ;
  • 김평일 ((재)농축산용미생물산업육성지원센터)
  • 투고 : 2018.11.16
  • 심사 : 2018.12.17
  • 발행 : 2019.02.28

초록

작물생육촉진과 병 방제 기능을 지닌 Bacillus velezensis GH1-13 균주의 대량배양을 위한 최적배지(glucose 0.5%, soy bean flour 0.8%, NaCl 0.15%, $K_2HPO_4$ 0.25%, $Na_2CO_3$ 0.05%, $MgSO_4.7H_2$ 0.1%) 조성을 확립하였다. 최적배지(MMS)를 이용하여 500 L 대용량 발효기에서 배양한 결과 총 균체수 $7.5{\times}10^9cells/mL$, $6.8{\times}10^9\;endospore\;cells/mL$ 및 90% 내생포자 형성률 등 안정된 대량생산을 확인하였다. 최적배지에서 배양한 GH1-13 균체와 배양 상층액의 경우 Colletotrichum gloeosporioides를 포함한 4종의 식물병원성 곰팡이에 대한 항진균활성을 보였다. 또한 식물생육촉진 호르몬의 일종인 IAA 생산량을 비교한 결과, 최적배지에서 배양한 경우 상업용 배지(TSB, R2A)에 비해 2.5~13배 이상 높은 생산성을 보였다. 더불어, 최적배지에 0.3% tryptophan을 첨가하여 배양했을 경우 28.50 mg/L의 IAA 최대 생산량을 보였으며, 이는 tryptophan을 첨가하지 않고 배양한 경우보다 약 4배 높은 수준이었다. 이러한 결과로 볼 때 본 연구에 사용된 B. velezensis GH1-13 균주는 작물생육촉진 및 곰팡이 병 방제 측면의 복합기능 생물학적 제제로서 매우 유용할 것으로 판단된다.

Bacillus genus are found abundantly in various sites and their secondary metabolites were used as potential agents in agriculture, notably plant growth promoting and bio-control. The objective of this study was to develop the culture conditions of GH1-13 strain including higher cell growth, stable endospore-forming and enhancement of potential agents which are related with plant growth promoting and phytopathogen suppression. The optimal carbon and nitrogen sources were determined by glucose and soy bean flour, respectively, then resulted in $7.5{\times}10^9cells/mL$, $6.8{\times}10^9\;endospore\;cells/mL$ and sporulation yield of 90% after 30 h cultivation in 500 L submerged fermenter at $37^{\circ}C$, pH 7.0. Cells and cell-free supernatant of GH1-13 strains showed the potent antifungal activity against phytopathogenic fungi of Colletotrichum gloeosporioides. It was also confirmed that indole-3-acetic acid (IAA) production of GH1-13 strain was greatly increased by addition of 0.3% tryptophan.

키워드

참고문헌

  1. Avis, T. J., V. Gravel, H. Antoun, and R. J. Tweddell. 2008. Multifaceted beneficial effects of rhizosphere microorganisms on plant health and productivity. Soil Biol. Biochem. 40: 1733-1740. https://doi.org/10.1016/j.soilbio.2008.02.013
  2. Bernal, G., A. Illanes, and L. Ciampi. 2002. Isolation and partial purification of a metabolite from a mutant strain of Bacillus sp. with antibiotic activity against plant pathogenic agents. Electron. J. Biotechnol. 5: 12-20.
  3. Glick, B. R. 2012. Plant growth-promoting bacteria: mechanisms and applications. Scientifica. 2012: 1-15. https://doi.org/10.6064/2012/963401
  4. Glickmann E. and Y. Dessaux. 1995. A critical examination of the specificity of the Salkowski reagent for indolic compounds produced by phytopathogenic bacteria. Appl. Environ. Microbiol. 61: 793-796 https://doi.org/10.1128/AEM.61.2.793-796.1995
  5. Kang, B. R., A. J. Anderson, and Y. C. Kim. 2018. Hydrogen cyanide produced by Pseudomonas chlororaphis O6 exhibits nematicidal activity against Meloidogyne hapla. Plant Pathol. J. 34(1): 35-43. https://doi.org/10.5423/PPJ.OA.06.2017.0115
  6. Kim, S. Y., M. K. Sang, H-Y. Weon, Y-A. Jeon, J. H. Ryoo, and J. Song. 2016. Characterization of multifunctional Bacillus sp. GH1-13. Korean J. Pestic. Sci. 20: 189-196. https://doi.org/10.7585/kjps.2016.20.3.189
  7. Kim, S. Y., H. Song, M. K. Sang, H-Y. Weon, and J. Song. 2017. J. Biotechnology. 259: 221-227. https://doi.org/10.1016/j.jbiotec.2017.06.1206
  8. Kim, Y. H., S. K. Park, J. Y. Hur, and Y. C. Kim. 2017. Purification and characterization of a major extracellular chitinase from a biocontrol bacterium, Paenibacillus elgii HOA73. Plant Pathol. J. 33(3): 318-328 https://doi.org/10.5423/PPJ.FT.01.2017.0022
  9. Lambrecht, M., Y. Okon, A. V. Broek, and J. Vanerleyden. 2000. Indole-3-acetic acid : a reciprocal signalling molecule in bacteria-plant interactions. Trends Microbiol. 8: 298-300. https://doi.org/10.1016/S0966-842X(00)01732-7
  10. Mondol, M. A. M., H. J. Shin, and M. T. Islam. 2013. Diversity of secondary metabolites from marine Bacillus species: Chemistry and biological activity. Mar. Drugs. 11: 2846-2872. https://doi.org/10.3390/md11082846
  11. Nam, H-S., H-J. Yang, B. J. Oh, A. J. Anderson, and Y. C. Kim. 2016. Biological control potential of Bacillus amyloliquefaciens KB3 isolated from the feces of Allomyrina dichotoma larvae. Plant Pathol. J. 32(3): 273-280. https://doi.org/10.5423/PPJ.NT.12.2015.0274
  12. Salkowski, E., Uber das verhalten der skatolcarbonsaure im organisms. 1885. 9: 23-33.
  13. Sharma, R. R., D. Signh, and R. Singh. 2009. Biological control of postharvest diseases of fruits and vegetables by microbial antagonists: A review. Biological control. 50: 205-221. https://doi.org/10.1016/j.biocontrol.2009.05.001
  14. Santoyo, G., M. D. C. Orozco-Mosqueda, and M. Govindappa. 2012. Mechanisms of biocontrol and plant growth promoting activity in soil bacterial species of Bacillus and Pseudomonas: A review. Biocontrol Sci. Technol. 22: 855-872. https://doi.org/10.1080/09583157.2012.694413
  15. Spaepen, S., J. Vanderleyden, and R. Remans. 2007. Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol. Rev. 31: 425-448. https://doi.org/10.1111/j.1574-6976.2007.00072.x
  16. Velivelli, S. L. S., P. De Vos, P. Kromann, S. Declerck, and B. D. Prestwich. 2014. Biological control agents: From field to market, problems, and challenges. Trends Biotechnol. 32: 493-496. https://doi.org/10.1016/j.tibtech.2014.07.002
  17. Verschuere, L., G. Rombaut, P. Sorgeloos, and W. Verstraete. 2000. Probiotic bacteria as biological control agents in aquaculture. Microbiology and Molecular Biology Reviews. 64: 655-671. https://doi.org/10.1128/MMBR.64.4.655-671.2000