Browse > Article
http://dx.doi.org/10.7845/kjm.2016.6056

Antifungal activity of Streptomyces costaricanus HR391 against some plant-pathogenic fungi  

Kim, Hae-Ryoung (Department of Biological Sciences, Kangwon National University)
Song, Hong-Gyu (Department of Biological Sciences, Kangwon National University)
Publication Information
Korean Journal of Microbiology / v.52, no.4, 2016 , pp. 437-443 More about this Journal
Abstract
In this study Streptomyces strains were isolated from soils and their antifungal activities and involved mechanisms were investigated. Among over 400 isolates of actinomycetes, Streptomyces costaricanus HR391 was selected as a potential antagonist to control several plant-pathogenic fungi. S. costaricanus HR391 inhibited mycelial growth of Fusarium oxysporum f. sp. raphani, F. oxysporum f. sp. niveum, F. oxysporum f. sp. lycopersici, and Rhizoctonia solani by 26.5, 26.2, 21.2, and 23.8%, respectively compared to those of uninoculated control after 7-day incubation on PDB medium. S. costaricanus HR391 produced $89{\mu}M$ of siderphore, and showed fungal cell wall-degrading activity including $0.46{\mu}mol/min/mg$ of chitinase and $0.83{\mu}mol/min/mg$ of ${\beta}$-1,3 glucanase. S. costaricanus HR391 secreted 87.49 mg/L of rhamnolipid, and produced 9.49 mg/L and 4.3 mM of lipopeptide, iturin A and surfactin, respectively, all they are membrane-disrupting biosurfactants. It also produced antimicrobial peptide and antibiotics phenazine. In addition to antifungal substances, S. costaricanus HR391 secreted plant growth-promoting phytohormones, zeatin, gibberellins and IAA. These results suggest that S. costaricanus HR391 may be utilized as an environment-friendly biocontrol agent against some important pathogenic fungi.
Keywords
Streptomyces costaricanus HR391; antifungal activity; plant growth promotion; plant-pathogenic fungi;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Palaniyandi, S., Yang, S., Zhang, L., and Suh, J. 2013. Effects of actinobacteria on plant disease suppression and growth promotion. Appl. Microbiol. Biotechnol. 97, 9621-9636.   DOI
2 Park, J., Kim, J., Park, Y., and Kim, S. 2012. Purification and characterization of a 1,3-${\beta}$-D-glucanase from Streptomyces torulosus PCPOK-0324. Carbohydr. Polym. 87, 1641-1648.   DOI
3 Patil, N., Waghmare, S., and Jadhav, J. 2013. Purification and characterization of an extracellular antifungal chitinase from Penicillium ochrochloron MTCC 517 and its application in protoplast formation. Process Biochem. 48, 176-183.   DOI
4 Reddy, K., Yedery, R., and Aranha, C. 2004. Antimicrobial peptides: premises and promises. Int. J. Antimicrob. Agents 24, 536-647.   DOI
5 Roberts, D., Lohrke, S., Meyer, S., Buyer, J., Bowers, J., Jacyn Baker, C., and Chung, S. 2005. Biocontrol agents applied individually and in combination for suppression of soil borne diseases of cucumber. Crop Prot. 24, 141-155.   DOI
6 Rodrigues, L., Teixeira, J., van der Mei, H., and Oliveira, R. 2006. Physicochemical and functional characterization of a biosurfactant produced by Lactococcus lactis 53. Colloids Surf. B 49, 79-86.   DOI
7 Shirling, J. and Gottlieb, D. 1966, Methods for characterization of Streptomyces species. Int. J. Syst. Evol. Microbiol. 16, 313-340.
8 Wang, Y., Lu, Z., Bie, X., and Lv, F. 2010. Separation and extraction of antimicrobial lipopeptides produced by Bacillus amyloliquefaciens ES-2 with macroporous resin. Eur. Food Res. Technol. 231, 189-196.   DOI
9 Xu, D., Wang, Y., Sun, L., Liu, H., and Li, J. 2013. Inhibitory activity of a novel antibacterial peptide AMPNT-6 from Bacillus subtilis against Vibrio parahaemolyticus in shrimp. Food Control 30, 58-61.   DOI
10 Abdallah, R., Mokni-Tlili, S., Nefzi, A., Jabnoun-Khiareddine, H., and Daami-Remadi, M. 2016. Biocontrol of Fusarium wilt and growth promotion of tomato plants using endophytic bacteria isolated from Nicotiana glauca organs. Biol. Control 97, 80-88.   DOI
11 Arunachalam, S., Yang, S., Zhang, L., and Suh, J. 2013, Effects of actinobacteria on plant disease suppression and growth promotion. Appl. Microbiol. Biotechnol. 97, 9621-9636.   DOI
12 Afsharmanesh, H., Ahmadzadeh, M., Javan-Nikkhah, M., and Behboudi, K. 2014. Improvement in biocontrol activity of Bacillus subtilis UTB1 against Aspergillus flavus using gamma-irradiation. Crop Prot. 60, 83-92.   DOI
13 Aftab, U. and Sajid, I. 2016. Antitumor peptides from Streptomyces sp. SSA 13, isolated from Arabian Sea. Int. J. Pept. Res. Ther. In Press. doi:10.107/s10989-016-9552-6.
14 Aldesuquy, H., Mansour, F., and Abo-Hamed, S. 1998. Effect of the culture filtrates of Streptomyces on growth and productivity of wheat plants. Folia Microbiol. 43, 465-470.   DOI
15 Berendsen, R., Pieterse, C., and Bakker, P. 2012. The rhizosphere microbiome and plant health. Trends Plant Sci. 17, 478-486.   DOI
16 Boukaew, S. and Prasertsan, P. 2014. Suppression of rice sheath blight disease using a heat stable culture filtrate from Streptomyces philanthi RM-1-138. Crop Prot. 61, 1-10.
17 Chen, Y., Shen, X., Peng, H., Hu, H., Wang, W., and Zhang, X. 2015. Comparative genomic analysis and phenazine production of Pseudomonas chlororaphis, a plant growth-promoting rhizobacterium. Genomics Data 4, 33-42.   DOI
18 Gupta, R. and Srivastava, S. 2014. Antifungal effect of antimicrobial peptides (AMPs LR14) derived from Lactobacillus plantarum strain LR/14 and their applications in prevention of grain spoilage. Food Microbiol. 42, 1-7.   DOI
19 Gopalakrishnan, S., Pande, S., Sharma, M., Humayun, P., Kiran, B., Sandeep, D., and Rupela, O. 2011. Evaluation of actinomycete isolates obtained from herbal vermicompost for the biological control of Fusarium wilt of chickpea. Crop Prot. 30, 1070-1078.   DOI
20 Guo, S., Chen, J., and Lee, W. 2004. Purification and characterization of extracellular chitinase from Aeromonas schubertii. Enzyme Microb. Technol. 35, 550-556.   DOI
21 Han, Y., Li, Z., Miao, X., and Zhang, F. 2008. Statistical optimization of medium components to improve the chitinase activity of Streptomyces sp. Da11 associated with the South China Sea sponge Craniella australiensis. Process Biochem. 43, 1088-1093.   DOI
22 Kalbe, C., Marten, P., and Berg, G. 1996. Strains of the genus Serratia as beneficial rhizobacteria of oilseed rape with antifungal properties. Microbiol. Res. 151, 433-439.   DOI
23 Kalyani, A., Girija, S., and Prabhakar, T. 2014. Optimization of rhamnolipid biosurfactant production by Streptomyces matensis (NBRC 12889$^T$) using Plackett-Burman design. J. Biomed. Pharmac. Res. 3, 1-7.
24 Faheem, M., Raza, W., Zhong, W., Nan, Z., Shen, Q., and Xu, Y. 2015. Evaluation of the biocontrol potential of Streptomyces goshikiensis YCXU against Fusarium oxysporum f. sp. niveum. Biol. Control 81, 101-110.   DOI
25 Ghosh, R., Barman, S., Mukhopadhyay, A., and Mandal, N. 2015. Biological control of jackfruit by rhizobacteria and food grade lactic acid bacteria. Biol. Control 83, 29-36.   DOI
26 Loqman, S., Barka, E., Clement, C., and Ouhdouch, Y. 2009. Antagonistic actinomycetes from Moroccan soil to control the grapevine gray mold. World J. Microbiol. Biotechnol. 25, 81-91.   DOI
27 Kamensky, M., Ovadis, M., Chet, I., and Chernin, L. 2003. Soil-borne strain IC14 of Serratia plymuthica with multiple mechanisms of antifungal activity provides biocontrol of Botrytis cinerea and Sclerotinia sclerotiorum diseases. Soil Biol. Biochem. 35, 323-331.   DOI
28 Karadeniz, A., Topcuoglu, S., and Inan, S. 2006. Auxin, gibberellin, cytokinin and abscisic acid production in some bacteria. World J. Microbiol. Biotechnol. 22, 1061-1064.   DOI
29 Khopade, A., Biao, R., Liu, X., Mahadik, K., Zhang, L., and Kokare, C. 2012. Production and stability studies of the biosurfactant isolated from marine Nocardiopsis sp. B4. Desalination 285, 198-204.   DOI
30 Laursen, J. and Nielsen, J. 2004. Phenazine natural products: biosynthesis, synthetic analogues, and biological activity. Chem. Rev. 104, 1663-1686.   DOI
31 Maget-Dana, R., Thimon, L., Peypoux, F., and Ptak, M. 1992. Surfactin/iturin A interactions may explain the synergistic effect of surfactin on the biological properties of iturin A. Biochimie 74, 1047-1051.   DOI
32 Mellouli, L., Ameur-Mehdi, R., Sioud, S., Salem, M., and Bejar, S. 2003. Isolation, purification and partial characterization of antibacterial activities produced by a newly isolated Streptomyces sp. US24 strain. Res. Microbiol. 154, 345-352.   DOI
33 Nagarajkumar, M., Bhaskaran, R., and Velazhahan, R. 2004. Involvement of secondary metabolites and extracellular lytic enzymes produced by Pseudomonas fluorescens in inhibition of Rhizoctonia solani, the rice sheath blight pathogen. Microbiol. Res. 159, 73-81.   DOI
34 Nelson, N. 1944. A photometric adaptation of the Somogyi method for the determination of glucose. J. Biol. Chem. 153, 375-380.