Browse > Article
http://dx.doi.org/10.5352/JLS.2016.26.10.1163

Isolation and Characterization of Phosphate Solubilizing Bacteria Pantoea Species as a Plant Growth Promoting Rhizobacteria  

Yun, Chang Yeon (Department of Bio-Environmental Science, Sunchon National University)
Cheong, Yong Hwa (Department of Bio-Environmental Science, Sunchon National University)
Publication Information
Journal of Life Science / v.26, no.10, 2016 , pp. 1163-1168 More about this Journal
Abstract
Plant growth-promoting rhizobacteria (PGPR) have gained worldwide importance and acceptance due to their agricultural benefits. These microorganisms are potential tools for sustainable agriculture, with effects on plant growth, biofertilization, induced systemic resistance, and biocontrol of plant pathogens. In this study, four different Pantoea species were isolated from field soil, and their plant growth-promoting characteristics were studied. Based on 16S rDNA gene sequencing analyses, the se were grouped into Pantoea ananatis, Pantoea citrea, Pantoea dispersa, Pantoea vagans and named as Pa1, Pc1, Pd1, Pv1, respectively. All of these strains have their ability for solubilization of insoluble phosphate depending on pH decrease at the range around pH 5 at 1days after inoculation and production of plant hormone indole acetic acid (IAA) with 85.3±16.3 μg/ml of Pa1, 183.9±16.8 μg/ml of Pc1, 28.8±17.3 μg/ml of Pd1 and 114.1±16.5 μg/ml of Pv1, respectively. Pa1, Pc1 and Pd1 also have high activity for production of gibberellin (GA3) hormone with 331.1±19.2 μg/ml of Pa1, 288.5±16.8 μg/ml of Pc1, 309.2±18.2 μg/ml of Pd1, but Pv1 does not. Furthermore, all these species have significantly promoted the growth of the lettuce seedling plants at the range around 32~37% for fresh weight and 10~15% for shoot length enhancement, so that these microbe could be used as a potential bio-fertilizer agents.
Keywords
Biofertilizer agent; IAA and GA3 production; pantoea species; phosphate solubilizing bacteria (PSB); plant growth promoting rhizobacteria (PGPR);
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Khan, A. A., Jilani, G., Akhtar, M. S., Naqvi, S. M. S. and Rasheed, M. 2009. Phosphorus solubilizing bacteria: occurrence, mechanisms and their role in crop production. J. Agric. Biol. Sci. 1, 48-58.
2 Khan, M. S., Zaidi, A., Ahemad, M., Oves, M. and Wani, P. A. 2010. Plant growth promotion by phosphate solubilizing fungi - current perspective. Arch. Agron. Soil Sci. 56, 73-98.   DOI
3 Kumar, S., Tamura, K., Jakobsen, I. B. and Nei, M. 2001. MEGA2: molecular evolutionary genetics analysis software. Bioinformatics 17, 1244-1245.   DOI
4 Leveau, J. H. J. and Lindow, S. E. 2005. Utilization of the plant hormone indole-3-acetic acid for growth by Pseudomonas putida strain 1290. Appl. Environ. Microbiol. 71, 2365-2371.   DOI
5 Lugtenberg, B. and Kamilova, F. 2009. Plant-growth-promoting rhizobacteria. Annu. Rev. Microbiol. 63, 541-556.   DOI
6 Marques, A. P. G. C., Pires, C., Moreira, H., Rangel, A. O. S. S. and Castro, P. M. L. 2010. Assessment of the plant growth promotion abilities of six bacterial isolates using Zea mays as indicator plant. Soil Biol. Biochem. 42, 1229-1235.   DOI
7 Murphy, J. and Riley, J. P. 1962. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta. 27, 265-270.
8 Pikovskaya, R. I. 1948. Mobilization of phosphorus in soil in connection with vital activity of some microbial species. Microbiologiya 17, 362-370.
9 Rengel, Z. and Marschner, P. 2005. Nutrient availability and management in the rhizosphere: exploiting genotypic differences. New Phytol. 168, 305-312.   DOI
10 Bhattacharyya, P. N. and Jha, D. K. 2012. Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J. Microbiol. Biotechnol. 28, 1327-1350.   DOI
11 Bloemberg, G. V. and Lugtenberg, B. 2001. Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr. Opin. Plant Biol. 4, 343-350.   DOI
12 Bottini, R., Cassan, F. and Piccoli, P. 2004. Gibberellin production by bacteria and its involvement in plnat growth promotion and yield increase. Appl. Microbiol. Biotechnol. 65, 497-503.
13 Castagno, L. N., Estrella, M. J., Sannazzaro, A. I., Grassano, A. E. and Ruiz, O. A. 2011. Phosphate-solubilization mechanism and in vitro plant growth promotion activity mediated by Pantoea eucalypti isolated from Lotus tenuis rhizosphere in the Salado River Basin (Argentina). J. Appl. Microbiol. 110, 1151-1165.   DOI
14 Dastager, S. G., Deepa, C. K., Puneet, S. C., Nautiyal, C. S. and Pandey, A. 2009. Isolation and characterization of plant growth-promoting strain Pantoea NII-186. From Western Ghat forest soil, India. Lett. Appl. Microbiol. 49, 20-25.   DOI
15 Sahin, F., Cakmakci, R. and Kanta, F. 2004. Sugar beet and barley yields in relation to inoculation with N2-fixing and phosphate solubilizing bacteria. Plant Soil. 265, 123-129.   DOI
16 Richardson, A. E. 2001. Prospects for using soil microorganisms to improve the acquisition of phosphorus by plants. Aust. J. Plant Physiol. 28, 897-906.
17 Rodriguez, H. and Fraga, R. 1999. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol. Adv. 17, 319-339.   DOI
18 Saber, K., Nahla, L. D. and Chedly, A. 2005. Effect of P on nodule formation and N fixation in bean. Agron. Sustain. Dev. 25, 389-393.   DOI
19 Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenic trees. Mol. Biol. Evol. 4, 406-425.
20 SAS 1999. SAS/STAT User’s Guide Version 8. SAS. Cary. NC.
21 Sharma, S. B., Sayyed, R. Z., Trivedi, M. H. and Gobi, T. A. 2013. Phosphate solubilizing microbe: sustainable approach for managing phosphorus deficiency in agricultural soils. Springerplus 2, 587.   DOI
22 Singh, O., Gupta, M., Mittal, V., Kiran, S., Nayyar, H., Gulati, A. and Tewari, R. 2014. Novel phosphate solubilizing bacteria ‘Pantoea cypripedii PS1’ along with Enterobacter aerogenes PS16 and Rhizobium ciceri enhance the growth of chickpea(Cicer arietinum L.). Plant Growth Regul. 73, 79-89.   DOI
23 Glick, B. R. 1995. The enhancement of plant growth by free living bacteria. Can. J. Microbiol. 4, 1109-1114.
24 da Silva, J. F., Barbosa, R. R., de Souza, A. N., da Motta, O. V., Teixeira, G. N., Carvalho, V. S., de Souza, A. L. and de Souza Filho, G. A. 2015. Isolation of Pantoea ananatis from sugarcane and characterization of its potential for plant growth promotion. Genet. Mol. Res. 14, 15301-15311.   DOI
25 Dey, R., Pal, K. K., Bhatt, D. M. and Chauhan, S. M. 2004. Growth promotion and yield enhancement of peanut(Arachis hypogaea L.) by application of plant growth promoting rhizobacteria. Microbiol. Res. 159, 371-394.   DOI
26 Dutkiewicz, J., Mackiewicz, B., Lemieszek, M. K., Golec, M. and Milanowski, J. 2016. Pantoea agglomerans: a mysterious bacterium of evil and good. Part IV. Beneficial effects. Ann. Agric. Environ. Med. 23, 206-222.   DOI
27 Gordon, S. A. and Weber, R. P. 1951. Colorimetric estimation of indole acetic acid. Plant Physiol. 2, 192-195.
28 Holbrook, A., Edge, W. and Bailey, F. 1961. Spectrophotometric method for determination of gibberellic acid. Adv. Chem. Ser. 28, 159-167.   DOI
29 Illmer, P. A. and Schinner, F. 1992. Solubilization of inorganic phosphates by microorganisms isolated from forest soil. Soil Biol. Biochem. 24, 389-395.   DOI
30 Jeon, J. S., Lee, S. S., Kim, H. Y., Ahn, T. S. and Song, H. G. 2003. Plant growth promotion in soil by some inoculated microorganisms. J. Microbiol. 41, 271-276.
31 Jha, Y. and Subramanian, R. B. 2014. Characterization of root-associated bacteria from paddy and its growth promotion efficacy. 3 Biotech. 4, 325-330.
32 Walterson, A. M. and Stavrinides, J. 2015. Pantoea: insights into a highly versatile and diverse genus within the Enterobacteriaceae. FEMS Microbiol. 39, 968-984.   DOI
33 Steel, R. G. D. and Torrie, J. H. 1980. Principles and Procedures of Statistics 2nd Edn. New York, NY: McGraw Hill Book Co. Inc.
34 Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. and Higgins, D. G. 1997. The clustal x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25. 4876-4882.   DOI
35 Vessey, J. K. 2003. Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255, 571-586.   DOI